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Exception Tolerance

◦ We want to phrase principles like this: Statives don’t like to be
Results.

◦ But statives aren’t forbidden from being results.
(1) John shot Bill. ?He was dead. (3He died.)

(2) I threw a giant water balloon at Hans. His shirt was wet.
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Revision

(3) John took a train from Paris to Istanbul.

He has family there.

(4) John took a train from Paris to Istanbul.

He has family there and he wanted to get away from them.
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Commonsense Entailment



We’re going on a Tangent!

◦ We want to formalise the notion “typically” or “normally”.

◦ This is so we can say “typically, a discourse with such and such
linguistic form has such and such coherence form”)

> Construction of SDRSs from natural language discourses.

◦ We also want to say something like “speaker A thinks that
normally salmon and cheese are a great dinner”

◦ We do this in default logics, logics that license statements like “X
entails Y unless it doesn’t”

◦ Because this is weird, I’m showing you one such logic.
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Reasoning with Exceptions

◦ We feel entitled to use these sentences in inference.

(5) Birds fly.

Tux is a bird.

Tux flies.

◦ We feel that such inferences blocked without contradiction.

(6) Birds fly.

Tux is a bird.

Tux doesn’t fly.

Contradiction.
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The Epistemic Argument (Pelletier & Asher 1997)

◦ Exception-tolerant statements form a large part of our
knowledge.

> And that knowledge is true, inferentially tractable, good.
> “intellectually satisfying and practically useful” (P&A 97)

◦ Commonsense Knowledge.

◦ ≈ the knowledge of regularity while being simultaneously aware
that regularities can be broken.

◦ That is, we want:
(a) Truth-conditional semantics for commonsense knowledge.
(b) Inference on commonsense knowledge.
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Default Logic

◦ Default Logics are logics of nonmonotonic inference.
> Monotonicity: If Γ ` ψ then Γ, ϕ ` ψ.

◦ The idea is that added information can cancel inferences.
> “A entails B (A ` B) unless it happens to be the case that ¬B. Then A
doesn’t entail B (A,¬B 6` B)

> “A entails B unless we are in a state where it A came to be throughabnormal circumstances, in which A doesn’t entail B.”

◦ Goal: define an ceteris paribus-conditional > and with a default
entailment relation |∼ (default inference).
◦ Defeasible Modus Ponens:
A, A > B |∼ B.
A, A > B,¬B |/∼ B.
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Simple Transformations

(7) Birds fly.

Airplanes fly.

Things that are Birds or Airplanes fly.

◦ b > f , a > f |∼ (b ∨ a) > f .
(Disjunction of the Antecedent).

(8) Birds fly.

Fliers must have wings.

Birds have wings.

◦ b > f ,�(f → w) |∼ b > w.
(Closure in the Consequent).
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The Nixon Diamond

(9) Richard Nixon is a Quaker.

Richard Nixon is a Republican.

Republicans are warmongers.

Quakers are pacifists.

Nixon is a warmonger.

Nixon is a pacifist.

◦ When in doubt, conclude neither.

◦ q, r, r > w, q > p,¬(w ∧ p) |/∼ p

◦ q, r, r>w, q > p,¬(w∧p) |/∼w
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Nixon Diamond: Result and Statives

◦ In the ULF language we’ll want to say something like this:

R(α, β) ∧ stative(β) > ¬(R = Result)
R(α, β) ∧ ♦cause(eα, eβ) > R = Result

(10) John shot Bill. ?He was dead.

R(α, β) ∧ eventive(α) ∧ stative(β) > R = Background
bck
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The Penguin Principle

(11) Birds fly.

Penguins don’t fly.

Penguins are birds (by definition).

Tux is a penguin.

Tux flies.

Tux doesn’t fly.

◦ The more specific inference wins.
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◦ You can always be more specific.

(12) Birds fly.

Penguins don’t fly.

All Penguins are Birds.

Tux is a penguin.

Penguins with jetpacks fly.

Tux is a jetpack penguin
Tux doesn’t fly.

Tux flies.
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Penguin Principle: Narration and Explanation

◦ In the ULF language we’ll want to say something like this:

R(α, β) ∧ stative(α) ∧ eventive(β) > R = Background
fwd

R(α, β) ∧ stative(α) ∧ eventive(β) ∧ ♦cause(eβ, eα) > R = Expl

(13) Bill was dead. John shot him.
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Truth–Conditions for > (kudos to Nicholas Asher)

◦ The idea is that p > q is true if in all circumstances where p holds
and these are normal circumstances for p, then q holds.

◦ We express this with the following modal semantics.

Commonsense Entailment Frames

A commonsense entailment frame is a tuple 〈W, ∗〉 where W is a
set of worlds (propositional models) and ∗ : W × P(W)→ P(W) is
a function (“normality”) such that:

◦ for all w ∈ W , ∗(w, X) ⊆ X ,
◦ If ∗(w, X) ⊆ Y and ∗(w, Y) ⊆ X , then ∗(w, X) = ∗(w, Y).

◦ for all w, X, Y : ∗(w, X ∪ Y) ⊆ ∗(w, X) ∪ ∗(w, Y).
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Truth

A commonsense entailment model is a structure 〈W, ∗, V〉 such that
〈W, ∗〉 is a CE frame and V : W → P(At) is a valuation.

◦ M,w  p iff p ∈ V(w) for atoms p.
◦ M,w  ¬A iff M,w 6 A.
◦ M,w  A ∧ B iff M,w  A and M,w  B.
◦ M,w  �A iff for all v, M, v  A.
◦ M,w  A > B iff ∗(w, JAK) ⊆ JBK

where: JϕK = {w′ ∈ W | M,w′  ϕ}.

◦ A proposition A roughly corresponds to a set of worlds JAK.

◦ We interpret ∗ to select all the worlds where A is normal.

◦ So the truth–conditions of A > B are circumscribed as
“everywhere where A is normally true, B is true.”
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Monotonic Commonsense Entailment

Validity

Γ |= A iff on all models M and for all w ∈ WM:
if M,w  Γ then M,w  A.

◦ Standard arguments (finite model property) show that this is
decidable for finite Γ.

Lemma: Disjunction of the Antecedent

|= ((p > r) ∧ (q > r))→ ((p ∨ q) > r)).
Proof: Suppose M,w  (p > r) ∧ (q > r). Then:
∗(w, Jp ∨ qK) = ∗(w, JpK ∪ JqK) ⊆ ∗(w, JpK) ∪ ∗(w, JqK) ⊆ JrK. �
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Closure in the Consequent

◦ |=
(
�(B→ C) ∧ (A > B)

)
→ (A > C).

(Fliers must have wings; birds fly; so birds have wings.

◦ Proof:
– Fix a model M and a world w.
– Assume M,w  �(B→ C) ∧ (A > B).

– By the first conjunct, JBK ⊆ JCK.
– By the second conjunct, ∗(w, JAK) ⊆ JBK.
– Hence ∗(w, JAK) ⊆ JCK.
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Towards Defeasible Modus Ponens

◦ We now have a truth definition and a monotonic entailment
relation that tells us from facts about generic statements further

true generic statements.

> That’s pretty good!

◦ But we want to know what to infer from A, A > B.
◦ So we know that if “Birds fly” and “Fliers have wings” that “Birds
have wings”,

but we do not know that “Birds fly, Tux is a bird”

(nonmonotonically) entails that “Tux flies.”

◦ We need a definition of |∼ that valildates A, A > B |∼ B and
A, A > B,¬B |/∼ B.
◦ We are inclined to just take all normal worlds and check what is
going on there.

> However, this needs to be recursed. This is bonkers complicated.
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Towards |∼ (kudos to Alex Lascarides)

◦ We want to nail down where we can use A > B, A to conclude B.
We try to systematically eliminate abnormal premises.

◦ Let Γ be a finite set of formulae. Define:

Ant(Γ) = {A | Γ |= A > B for some B}.
For any A ∈ Ant(Γ) define:

ΓA = {(A > B)→ (A→ B) | Γ |= A > B}.

◦ An immediate extension of Γ is any set Γ′
such that

Γ′ = Γ ∪
⋃
A∈T ΓA for some T ⊆ Ant(Γ).

◦ An extension of Γ is an immediate extension of Γ or an
immediate extension of an extension of Γ.
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Commonsense Entailment (finally)

Propositional Commonsense Entailment

Γ |∼ A iff Γ→ |= A for all maximally satisfiable extensions Γ→
of Γ.

◦ Recall that |= is decidable; thus Γ |∼ A is decidable.

◦ It is easy to see that Defeasible Modus Ponens holds:

> A, A > B |∼ B and A, A > B,¬B |/∼ B.
> But A, A > B, C |∼ B if C is not a defeater for B.
> Because without a defeater, (A > B)→ (A→ B) is in every
consistent extension.

◦ Nixon Diamond:
> A > B, C > ¬B, C, A |/∼ B.
> A > B, C > ¬B, C, A |/∼¬B.
> Because there are consistent extensions with B and with ¬B.
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Specificity (kudos to Michael Morreau)

◦ We need one more lemma for the penguin principle:

◦ |=
(
�(P→ B) ∧ (B > F) ∧ (P > ¬F)

)
→ (B > ¬P).

(Penguins are birds, birds fly, penguins do not fly.

Thus, normal birds are not penguins.)

◦ Proof:
– Fix a model M and a world w. Assume the antecedent of the
conditional.

– Then JPK⊆JBK, i.e. JBK=(JBK \ JPK)∪JPK.
– Then ∗(w, JBK) ⊆ ∗(w, JBK \ JPK) ∪ ∗(w, JPK).

– Also ∗(w, JPK) ⊆ J¬FK and ∗(w, JBK) ⊆ JFK.
– So ∗(w, JPK) and ∗(w, JBK) are disjoint.

– Thus ∗(w, JBK) ⊆ ∗(w, JBK \ JPK).

– Hence ∗(w, JBK) ⊆ JBK \ JPK ⊆ J¬PK. �
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The Penguin Principle

◦ To show: �(P→ B), B > F, P > ¬F, P |∼¬F .
(Penguins are Birds; Birds fly; Penguins don’t fly; we have a penguin

|∼ it doesn’t fly)

◦ Proof.
– Let Γ = {�(P→ B), B > F, P > ¬F, P}.
Then, Ant(Γ) = {A | Γ |= A > X for some X} = {P, B}.

– We know: |=
(
�(P→ B) ∧ (B > F) ∧ (P > ¬F)

)
→ (B > ¬P).

– So Γ |= B > ¬P.
– So it is inconsistent to extend Γ with the antecedent B:

Γ ∪ {(B > ϕ)→ (B→ ϕ) | Γ |= B > ϕ} |= P ∧ ¬P.
– Thus B as an antecedent is defeated. All maximally consistent
extensions of Γ contain P→ ¬F .

– So we get Γ |∼¬F . �
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Underspecification, Resolution, Revision



Underspecified Logical Form

◦ The idea is this: we construct a language for incomplete
descriptions of SDRSs.

◦ So we need a language for “underspecified logical form” (ULF).

◦ We need a formal statement for “this SDRS is described by this
ULF”.
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ULF Language: atoms and variables

◦ So what are the bits and pieces of an SDRS?

◦ DRSs
> Any DRS K is an “atom” (or, constant symbol).
(you can underspecify these too, but I won’t)

◦ Labels
> Take variable symbols for labels l1, l2, ...

◦ Coherence relations
> Take a constant symbol DR for each coherence relation R
> Plus corresponding variable symbols D1,D2, ...

Underspecification, Resolution, Revision 26 / 62



ULF Language: Structure

◦ We underspecify:
◦ What the contents are.
◦ Which contents are connected.
◦ How they are connected.

◦ Take two predicate symbols to describe assignment:
> labels(l, K)
> relates(l1, l2, l3,D)

◦ And three to describe structure:
> outscopes(l1, l2)
> accessible(l1, l2)
> last(l1)
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ULF Language: Anaphor

◦ Anaphora are a type of underspecification.

◦ So take a constant symbol vx for each DRT-variable x (do this for
every type of variable).

◦ And add a predicate symbol:
> anaphor(l, v)

◦ (If you extend the language to partially describe microstructure,
you can write anaphora as x =? to indicate something like “x is
not in the universe of K”.)

Underspecification, Resolution, Revision 28 / 62



ULF Language: Anaphor

◦ Anaphora are a type of underspecification.

◦ So take a constant symbol vx for each DRT-variable x (do this for
every type of variable).

◦ And add a predicate symbol:
> anaphor(l, v)

◦ (If you extend the language to partially describe microstructure,
you can write anaphora as x =? to indicate something like “x is
not in the universe of K”.)

Underspecification, Resolution, Revision 28 / 62



Examples

◦ ULFs are constructed from surface form.

(14) There is a woman.

labels(l1,
x

woman(x)
)

(15) She runs.

labels(l2,
e,y

run(e)
actor(e,y)

) ∧ anaphor(l2, vy)
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Two Sentence Example

(16) There is a woman. She runs.

labels(l1,
x

woman(x)
)

∧ labels(l2,
e,y

run(e)
actor(e,y)

) ∧ anaphor(l2, vy)

∧ relates(l0, l1, l2,D)

∧ last(l2)
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ULF Language: Cue Phrases

◦ Add an (empirically sourced) vocabulary of linguistic cues to this
language.

◦ therefore therefore(l)
◦ and then and-then(l)
◦ I hereby command command(l)
◦ I hereby assert inform(l)
◦ Including grammatical features:

◦ declarative(l)
◦ interrogative(l)
◦ imperative(l)
Plus tense, aspect, mood ... – anything useful from the grammar!

Underspecification, Resolution, Revision 31 / 62



From ULF to SDRS

◦ The underspecified language has the formulas we seen so far,
closed under the logical constants =, ¬, ∨ and ∧.
> This logic has no quantifiers. All variables are implicitlyexistentially closed.

◦ Call a formulae in this language an ULF (underspecified logical
form).

◦ Now, this is conceptually a bit weird, but not hard:

◦ We want to define a turnstile |= such that for an SDRS S and an
ULF K, S |= K iff all descriptions from K are realised in S.

Underspecification, Resolution, Revision 32 / 62



From ULF to SDRS

◦ The underspecified language has the formulas we seen so far,
closed under the logical constants =, ¬, ∨ and ∧.
> This logic has no quantifiers. All variables are implicitlyexistentially closed.

◦ Call a formulae in this language an ULF (underspecified logical
form).

◦ Now, this is conceptually a bit weird, but not hard:

◦ We want to define a turnstile |= such that for an SDRS S and an
ULF K, S |= K iff all descriptions from K are realised in S.

Underspecification, Resolution, Revision 32 / 62



Assignment Function

◦ Let S = (Π,F , L) be an SDRS and A be a function s.t.:
> for each variable li, A(li) ∈ Π
> for each variable Di, A(Di) is some coherence relation.
> A(DR) = R for all coherence relations R
> A(vx) = x for all and DRT-variables x.

◦ (i.e. the variables are implicitly existentially quantified)
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◦ S, A |= x = y iff A(x) = A(y) (for any variables or constants x, y)

◦ S, A |= last(l1) iff A(l1) = L.
◦ S, A |= labels(l, K) iff K ⊆ F(A(l)) and F(A(l)) does not use relation
symbols not in K .

◦ S, A |= relates(l1, l2, l3,D) iff A(D)(A(l2), A(l3)) is a conjunct of F(A(l1)).

◦ S, A |= outscopes(l1, l2) iff A(l2) outscopes (in S) A(l1).
◦ S, A |= accessible(l1, l2) iff A(l1) is accessible (in S) from A(l2).
> This is the right frontier. See Wednesday slides.

◦ S, A |= anaphor(l, v) iff there is a DRT variable z introduced in some
segment λ ∈ Π (of S) such that
i. there is a relation R and labels α and β st F(α) has a conjunct
R(β, A(l));

ii. λ is accessible to β; and
iii. F(A(l)) has a condition A(v) = z.
◦ If cue(l) is a linguistic cue predicate, S, A |= cue(l) always.
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Important!

The ULF language has no world model. It is not about the

world, it is only about the construction of SDRSs.
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Linguistic Form to Coherence Structure

◦ So, given the linguistic form of a discourse, we:
> Compute for every clause the corresponding DRS K (by the DRT
construction algo), except that we don’t resolve anaphora here.

> Pick an unused label variable l1 and add labels(l1, K).

> (If there is an ambiguity, you can also add

labels(l1, K) ∨ labels(l1, K ′)).
> For every anaphor x in K add anaphor(l1, vx).
> Add appropriate predicates on l for cue phrases and linguistic
features (aspect etc.).

> For every clause except the very first one, pick another two unused

label variables l0, l2 and add relates(l0, l2, l1,D) (i.e. l1 attaches
somewhere)

◦ Call the conjunction of all these K.
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Two Sentence Example

(17) Phil tickled Stanley. He laughed.

|=

labels(l1,
p, s, e1
tickling(e1)
actor(e1, p)
object(e, s)

)

∧ labels(l2,
e2, y
laughing(e2)
actor(e2, y)

)

∧ anaphor(l2, vy)
∧ relates(l0, l1, l2,D)

∧ last(l2)
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A(l0) = π0, A(l1) = π1
A(l2) = π2, A(D) = Result
Π = {π0, π1, π2}, L = π2

F(π1) =

p, s, e1
tickling(e)
actor(e1, p)
object(e, s)

F(π2) =

e2, y
laughing(e2)
actor(e2, x)
y = s

F(π0) = Result(π1, π2)
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Enrichment

◦ The underspecified information that we get directly from the
linguistic form needs to be enriched with more information.
> Pragmatic, world knowledge, cue phrases need to be interpreted...

◦ So we use Commonsense Entailment again to phrase a logic for
enrichment of ULFs.

◦ It’s called the Glue Logic (GL).
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Glue Language

◦ The Glue Language is obtained from the underspecified
language by adding the connectives→ and >.
> still no quantifiers

◦ Moreover, the Glue Language contains additional predicates for
world knowledge

> cause(e1, e2) for “e1 causes e2”.

◦ Commonsense entailment really only works on decidable logics.

◦ DRT-Entailment is not decidable, so we still only use K ’s as
tokens—we only know them by their description, but have no
truth-conditional knowledge of theirmeaning in this logic.
> ‘cause(e1, e2)’ is a single propositional atom. We could (maybe
should) write it as pcause(e1,e2).
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Enrichment by Axioms

◦ In the Glue language, we hard-code “rational assumptions” about
how discourses are typically interpreted.

◦ A script for occasion is a Glue formula to infer occasion from
content-level information (i.e. from descriptions of DRSs):

◦ One suggested by Asher & Lascarides:
relates(l0, l1, l2,D)

∧ labels(l1, K1) ∧ fall(e1, x1) ∈ K1
∧ labels(l2, K2) ∧ help-up(e2, x2, x3) ∈ K2
>occasion(e1, e2)

◦ relates(l0, l1, l2,D) ∧ occasion(l1, l2) > Narration(l1, l2)
◦ (I use italics for Glue predicates and monospace for tokenised
DRT predicates; AL2003 use brackets, e.g. [fall])
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This Seems Very Tedious

◦ The Big Problem of Formal Pragmatics: how do these things
generalise?

◦ At the current state of research, we can describe mechanisms
for pragmatic inference.

◦ But we need to hard code world knowledge, lexical knowledge
etc.

◦ Part of our mechanisms is also a language for hard-coding.
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“Structural” Principles (Asher 1993)

◦ We also encode certain stipulation about what is a “good” story.

◦ For example, that sub-stories form complex segments.

(relates(l0, l1, l2,D1)
∧ relates(l3, l2, l4,D2)
∧ D1 = Elaboration
∧ Coordinating(D2)

)
→
(outscopes(l5, l2) ∧ outscopes(l5, l4)
∧relates(l0, l1, l5,DElab

)
)

l1

l2 l4Narr
Elaboration

Elaboration
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Inferring Relations: sufficiency

◦ SDRT typically includes Glue axioms that state if all semantic
consequences of a relation obtain (and this is known to the Glue

logic), then the relation is inferred.

◦ (“the totality of necessary consequences is typically sufficient”)

◦ labels(l1, K1)∧ labels(l2, K2)∧ relates(l0, l1, l2, R)∧cause(e2, e1) >
R = DExplanation.

◦ labels(l1, K1)∧ labels(l2, K2)∧ relates(l0, l1, l2, R)∧cause(e1, e2) >
R = DResult.
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Notation

◦ Hereinafter, I will make our lives a bit easier, where possible:
> R(α, β) ∧ cause(β, α) > R = Explanation.

◦ Typical abbreviation in SDRT papers:
> λ :?(α, β) ∧ cause(Kβ , Kα) > λ : Explanation(α, β).
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Explanatoriness?

◦ You don’t have to do everything by piecemeal.
�(R(α, β) ∧ subord(R)→ (R′(α, β)→ ¬coord(R′)))

R(α, β) ∧ eventive(α) ∧ stative(β) > R = Background
bck

R(α, β) ∧ stative(α) ∧ eventive(β) > R = Background
fwd

R(α, β) ∧ stative(α) ∧ stative(β) > R = BGfwd ∨ R = BGbck
◦ You get this for free:

R(α, β) ∧ stative(β) > ¬(R = Result)
◦ But not this:
R(α, β) ∧ stative(α) > ¬(R = Explanation)
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Inferring Relations: Cue Phrases

◦ Monotonic cues:
(R(α, β) ∧ therefore(β))→ R = Result
(R(α, β) ∧ and-then(β))→ R = Narration

◦ Performatives:
assertoric(π)→
((R(λ, π) ∧ right-veridical(R)) ∨ (R(π, λ) ∧ left-verdicial(R))).

◦ Defeasible cues:
declarative(π) > assertoric(π)
(R(α, β) ∧ and(β)) > coord(R)
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Inferring Relations: Rationality Principles

◦ It is rational to interpret a response to a question as an answer:

(R(α, β) ∧ interrogative(α) ∧ declarative(β)∧
spk(α) 6= spk(β)) > R = Indirect Question Answer Pair

(18) a. A: Is John going out tonight?
]
-IQAP

b. B: I saw him dress up earlier.

(19) a. A: Why is seaweed good for you?
]
-IQAP

b. B: Lots of vitamins.

◦ A question after a declarative should ask something about it:

(R(α, β) ∧ declarative(α) ∧ interrogative(β)∧
spk(α) 6= spk(β)) > R = Elaborating-Question
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Back-flow of semantic information

◦ The following are Glue logic axioms:

(relates(l0, l1, l2,DExplanation) ∧ labels(l1, K1) ∧ labels(l2, K2))

→ ¬before(l1, l2) ∧ cause(e2, e1).
(relates(l0, l1, l2,DNarration)→ before(l1, l2) ∧ occasion(l1, l2).

◦ So if we already have inferred a relation, we learn a bit more
about the label contents.

> This is in spite of us not having proper access to these contents.

◦ We do this by encoding our knowledge about meaning
postulates in such Glue axioms.

> Have to do this because the Glue logic does not know the
postulates.
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Interpretation Schema
Linguistic Forms

3

are interpreted to

Glue Axioms

3

enrich⇒
⇐include ULFs (partially describe content)

(stipulations

about

interpretation)

are specified to

SDRSs (describe coherence structure)

3

are converted to
DRSs (describe event structure)

3

are evaluated in
Models
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Construction of SDRSs (overview)

◦ Context (the information contained in the prior discourse) may
contain underspecified / defeasible information.

◦ Thus, the context is a big ULF formula Γ (possibly empty).

> If you so desire, let the context be set σ of SDRSs. Then define Γ to
be the ULF that describes them all (Γ = Th(σ), in the book).

◦ Now, let K a ULF representing new information. Let lnew be a
label variable not not used in Γ. Then define:

◦ update(Γ, lnew : K) is the set of all (and only) those pairs (S, A) (S
an SDRS; A an assignment) where L = A(lnew) and that satisfy the
defeasible consequences of attaching K to some available
segment in Γ.
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Construction of Discourse (formal)

◦ Let lnew be a label variable not used in Γ.

◦ Let Rn, l1 and l2 be variables not used in Γ.

◦ Let lλ be the “last” label in Γ (i.e. the lnew from the last update).
> Can also define this as the “accessibility-minimal” label.

◦ Then: (S, A) ∈ update(Γ, lnew : K) iff
S = (Π,F , L), is an interpretable SDRS with L = A(lnew), and for
all formulae ϕ of the underspecified language (if Γ 6= ∅):

If Γ∧K∧relates(l1, l2, lnew, Rn)∧accessible(l2, lλ) |∼ϕ, then S, A |= ϕ.

(if Γ = ∅): If K |∼ϕ, then S, A |= ϕ.

good enough?
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Some Remarks, to be clear

◦ We do not expect to arrive at one fully specified SDRS.
◦ A context will almost-always contain a certain amount of
underspecification.

> When we assign a single SDRS to a discourse we are to some

degree using our magic human powers of interpretation.

◦ In addition, even if we get a single SDRS, the next utterance

might require us to revise.

◦ So, officially, we consider a context to be the ULF that represents
only the linguistic information of a linguistic form.

◦ We compute all the Glue-consequences anew every time.
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Maximise Discourse Coherence

◦ There may be a lot of SDRSs in update(Γ, π : K).

◦ We want to pick out the “best” ones.

◦ Intuitively, some ways of structuring a discourse “tell a better

story” than others.

◦ We’ll call the good ones “most coherent” and formalise
conditions on what such coherence might be.
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MDC

An SDRS K is at least as coherent as an SDRS K ′, K ′ ≤c K , if and only
if all of the following hold:

1. Prefer consistency: If K ′ is consistent, then so is K .
2. Prefer rich structure: K has at least as many coherence relations
as K ′.

3. Prefer resolution: K binds (over accommodates) at least as many
presuppositions as K ′ does.

4. Prefer better relations: For every rhetorical relation R(π1, π2) that
K ′ and K share: R(π1, π2) is at least as coherent in K as it is in K ′.

5. Prefer flat structure: K has at most as many labels as K ′ unless K ′
has a semantic clash and K does not.

(these are “global” conditions and cannot be put as glue axioms)
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MDC: Clashes

◦ A semantic clash is a conflict of veridicality.

(20) a. π1: If a shepherd goes to the mountains,

π2: he will bring his dog.

π3: He brings a good walking stick too.

3b. π0: Consequence(π1, π)

π : Parallel(π2, π3)
7c. π0: Consequence(π1, π2) ∧ Parallel(π2, π3)
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MDC: Quality of Relations

◦ Topic (Continuation & Narration) is scalar:

(21) a. Düsseldorf is the birth place of Heinrich Heine.

? Düsseldorf has a university.

b. Düsseldorf is the birth place of Heinrich Heine.

Its university is named after him.

◦ Contrast is scalar:

(22) a. John loves opera, but hates musicals.

?b. John loves opera, but likes musicals.

(23) a. John had pocket aces, but lost.

?b. John had a pair, but lost.
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MDC: Quality of Relations, Example

◦ Sometimes the “better relation” decides some underspecified
element.

(24) I thought Arshak was on the river. He was at the bank.

(25) I thought Arshak was on the river and he was at the bank.

(26) I thought Arshak was on the river, but he was at the bank.
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A Framework, not an Answer to Everything

◦ Clearly, I have not given you a (even nearly) complete set of
construction principles.

(27) I gave Arpine a dozen roses. She was thrilled.

◦ We have a preference to interpret possible causes to Result.

◦ But this preference is overridden by statives usually not being
Results.

◦ Another preference, that eventive–stative constructions are
usually Background “wins” here.

◦ What kind of Glue axiom would “defeat” that preference?

SDRT-Update 59 / 62



Full SDRT Interpretation

Linguistic Forms

are interpreted to

Glue Axioms
enrich⇒
⇐include ULFs (partially describe content)

(axioms for

interpretation) are specified to
MDC selects SDRSs (describe coherence structure)

(axioms for

rich structures) are converted to
DRSs (describe event structure)

are evaluated in
Models

SDRT-Update 60 / 62



What we got

◦ We have a good theory of what discourse structure is, how it is
evaluated, and how it is constructed.

◦ It is still open what the coherence relations are, what exactly they

mean, and how exactly they are inferred.
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DONE!

... but still so much to do.
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