Anaphora and Ambiguity in Narratives

Daniel Altshuler, Hampshire College Julian J. Schlöder, University of Amsterdam ESSLLI 2019, Day 5

- We want to phrase principles like this: *Statives don't like to be Results.*
- But statives aren't *forbidden* from being results.
- (1) John shot Bill. ?He was dead. (He died.)
- (2) I threw a giant water balloon at Hans. His shirt was wet.

- (3) John took a train from Paris to Istanbul.He has family there.
- (4) John took a train from Paris to Istanbul.He has family there and he wanted to get away from them.

- We want to formalise the notion "typically" or "normally".
- This is so we can say "typically, a discourse with such and such linguistic form has such and such coherence form")
 - > Construction of SDRSs from natural language discourses.
- We also want to say something like "speaker A thinks that normally salmon and cheese are a great dinner"
- We do this in default logics, logics that license statements like "X entails Y unless it doesn't"
- Because this is weird, I'm showing you one such logic.

- $\circ~$ We feel entitled to use these sentences in inference.
- (5) Birds fly.

Tux is a bird.

Tux flies.

 $\circ~$ We feel that such inferences blocked without contradiction.

(6) Birds fly.

Tux is a bird.

Tux doesn't fly.

Contradiction.

The Epistemic Argument (Pelletier & Asher 1997)

- Exception-tolerant statements form a large part of our knowledge.
 - > And that knowledge is true, inferentially tractable, good.
 - > "intellectually satisfying and practically useful" (P&A 97)

The Epistemic Argument (Pelletier & Asher 1997)

- Exception-tolerant statements form a large part of our knowledge.
 - > And that knowledge is true, inferentially tractable, *good*.
 - > "intellectually satisfying and practically useful" (P&A 97)
- Commonsense Knowledge.
- $\circ \approx$ the knowledge of regularity while being simultaneously aware that regularities can be broken.

The Epistemic Argument (Pelletier & Asher 1997)

- Exception-tolerant statements form a large part of our knowledge.
 - > And that knowledge is true, inferentially tractable, *good*.
 - > "intellectually satisfying and practically useful" (P&A 97)
- Commonsense Knowledge.
- $\circ~\approx$ the knowledge of regularity while being simultaneously aware that regularities can be broken.
- That is, we want:
- (a) Truth-conditional semantics for commonsense knowledge.
- (b) Inference on commonsense knowledge.

- Default Logics are logics of nonmonotonic inference.
 - > Monotonicity: If $\Gamma \vdash \psi$ then $\Gamma, \varphi \vdash \psi$.
- The idea is that added information can cancel inferences.
 - > "A entails B ($A \vdash B$) unless it happens to be the case that ¬*B*. Then A doesn't entail B (A, ¬*B* \nvdash *B*)
 - "A entails B unless we are in a state where it A came to be through abnormal circumstances, in which A doesn't entail B."

- Default Logics are logics of nonmonotonic inference.
 - > Monotonicity: If $\Gamma \vdash \psi$ then $\Gamma, \varphi \vdash \psi$.
- The idea is that added information can cancel inferences.
 - > "A entails B ($A \vdash B$) unless it happens to be the case that ¬*B*. Then A doesn't entail B (A, ¬*B* \nvdash *B*)
 - "A entails B unless we are in a state where it A came to be through abnormal circumstances, in which A doesn't entail B."
- $\circ~$ Goal: define an ceteris paribus-conditional > and with a default entailment relation $\mid\!\!\sim$ (default inference).
- Defeasible Modus Ponens:

$$A, A > B \vdash B.$$

 $A, A > B, \neg B \mid \not\sim B$

(7) Birds fly.

Airplanes fly.

Things that are Birds or Airplanes fly.

◦ b > f, a > f ∼ (b ∨ a) > f. (Disjunction of the Antecedent).

(7) Birds fly.

Airplanes fly.

Things that are Birds or Airplanes fly.

• $b > f, a > f \sim (b \lor a) > f$. (Disjunction of the Antecedent).

(8) Birds fly.

Fliers must have wings.

Birds have wings.

◦ b > f, □($f \rightarrow w$) $\triangleright b > w$. (Closure in the Consequent). (7) Birds fly.

Airplanes fly.

Things that are Birds or Airplanes fly.

• $b > f, a > f \sim (b \lor a) > f$. (Disjunction of the Antecedent).

(8) Birds fly.

Fliers must have wings.

Birds have wings.

◦ b > f, □($f \rightarrow w$) $\triangleright b > w$. (Closure in the Consequent). (9) Richard Nixon is a Quaker.

Richard Nixon is a Republican.

Republicans are warmongers.

Quakers are pacifists.

Nixon is a warmonger.

Nixon is a pacifist.

• When in doubt, conclude neither.

(9) Richard Nixon is a Quaker.

Richard Nixon is a Republican.

Republicans are warmongers.

Quakers are pacifists.

Nixon is a warmonger.

Nixon is a pacifist.

- When in doubt, conclude neither.
- $q, r, r > w, q > p, \neg(w \land p) \not \lor p$
- $\circ q, r, r > w, q > p, \neg (w \land p) \not \lor w$

• In the ULF language we'll want to say something like this:

$$R(\alpha, \beta) \wedge stative(\beta) > \neg (R = Result)$$

$$R(\alpha, \beta) \land \Diamond \texttt{cause}(e_{\alpha}, e_{\beta}) > R = Result$$

(10) John shot Bill. ?He was dead.

 $R(\alpha, \beta) \land eventive(\alpha) \land stative(\beta) > R = Background_{bck}$

(11) Birds fly.

Penguins don't fly.

Penguins are birds (by definition).

Tux is a penguin.

Tux flies.

Tux doesn't fly.

• The more specific inference wins.

- $\circ\;$ You can always be more specific.
- (12) Birds fly.Penguins don't fly.All Penguins are Birds.Tux is a penguin.

$\circ\;$ You can always be more specific.

(12) Birds fly.

Penguins don't fly. All Penguins are Birds. Tux is a penguin. Penguins with jetpacks fly. Tux is a *jetpack* penguin

Tux doesn't fly. Tux flies.

 $\circ~$ In the ULF language we'll want to say something like this:

 $R(\alpha, \beta) \land stative(\alpha) \land eventive(\beta) > R = Background_{fwd}$

 $R(\alpha, \beta) \land stative(\alpha) \land eventive(\beta) \land \Diamond cause(e_{\beta}, e_{\alpha}) > R = Expl$

(13) Bill was dead. John shot him.

Truth–Conditions for > (kudos to Nicholas Asher)

• The idea is that *p* > *q* is true if in all circumstances where *p* holds and these are normal circumstances for *p*, then *q* holds.

Truth–Conditions for > (kudos to Nicholas Asher)

- The idea is that *p* > *q* is true if in all circumstances where *p* holds and these are normal circumstances for *p*, then *q* holds.
- We express this with the following modal semantics.

Commonsense Entailment Frames

A commonsense entailment frame is a tuple $\langle W, * \rangle$ where W is a set of worlds (propositional models) and $* : W \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ is a function ("normality") such that:

• for all $w \in W$, $*(w, X) \subseteq X$,

• If
$$*(w, X) \subseteq Y$$
 and $*(w, Y) \subseteq X$, then $*(w, X) = *(w, Y)$.

• for all w, X, Y: $*(w, X \cup Y) \subseteq *(w, X) \cup *(w, Y)$.

Truth

A commonsense entailment model is a structure $\langle W, *, V \rangle$ such that $\langle W, * \rangle$ is a CE frame and $V : W \to \mathcal{P}(At)$ is a valuation.

- $M, w \Vdash p$ iff $p \in V(w)$ for atoms p.
- $\circ M, w \Vdash \neg A \text{ iff } M, w \nvDash A.$
- $M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$.
- $M, w \Vdash \Box A$ iff for all $v, M, v \Vdash A$.

◦
$$M, w \Vdash A > B$$
 iff $*(w, \llbracket A \rrbracket) \subseteq \llbracket B \rrbracket$
where: $\llbracket \varphi \rrbracket = \{ w' \in W \mid M, w' \Vdash \varphi \}.$

- A proposition A roughly corresponds to a set of worlds [A].
- We interpret * to select all the worlds where *A* is normal.
- So the truth-conditions of A > B are circumscribed as "everywhere where A is normally true, B is true."

```
Validity

\Gamma \models A iff on all models M and for all w \in W^M:

if M, w \Vdash \Gamma then M, w \Vdash A.
```

 $\circ~$ Standard arguments (finite model property) show that this is decidable for finite $\Gamma.$

```
Validity

\Gamma \models A iff on all models M and for all w \in W^M:

if M, w \Vdash \Gamma then M, w \Vdash A.
```

 $\circ~$ Standard arguments (finite model property) show that this is decidable for finite $\Gamma.$

Lemma: Disjunction of the Antecedent $\models ((p > r) \land (q > r)) \rightarrow ((p \lor q) > r)).$

```
Validity

\Gamma \models A iff on all models M and for all w \in W^M:

if M, w \Vdash \Gamma then M, w \Vdash A.
```

 $\circ~$ Standard arguments (finite model property) show that this is decidable for finite $\Gamma.$

Lemma: Disjunction of the Antecedent $\models ((p > r) \land (q > r)) \rightarrow ((p \lor q) > r)).$ *Proof:* Suppose $M, w \Vdash (p > r) \land (q > r)$. Then: $*(w, \llbracket p \lor q \rrbracket) = *(w, \llbracket p \rrbracket \cup \llbracket q \rrbracket) \subseteq *(w, \llbracket p \rrbracket) \cup *(w, \llbracket q \rrbracket) \subseteq \llbracket r \rrbracket.$

$$\circ \models (\Box(B \to C) \land (A > B)) \to (A > C).$$

(Fliers must have wings; birds fly; so birds have wings.

$\circ \models (\Box(B \to C) \land (A > B)) \to (A > C).$

(Fliers must have wings; birds fly; so birds have wings.

- $\circ\,$ Proof:
 - Fix a model *M* and a world *w*.
 - Assume $M, w \Vdash \Box(B \to C) \land (A > B)$.
 - By the first conjunct, $\llbracket B \rrbracket \subseteq \llbracket C \rrbracket$.
 - By the second conjunct, $*(w, \llbracket A \rrbracket) \subseteq \llbracket B \rrbracket$.
 - Hence $*(w, \llbracket A \rrbracket) \subseteq \llbracket C \rrbracket$.

Towards Defeasible Modus Ponens

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - > That's pretty good!

Towards Defeasible Modus Ponens

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - > That's pretty good!
- But we want to know what to infer from A, A > B.
- So we know that if "Birds fly" and "Fliers have wings" that "Birds have wings", but we do not know that "Birds fly, Tux is a bird" (nonmonotonically) entails that "Tux flies."

Towards Defeasible Modus Ponens

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - > That's pretty good!
- But we want to know what to infer from A, A > B.
- So we know that if "Birds fly" and "Fliers have wings" that "Birds have wings", but we do not know that "Birds fly, Tux is a bird" (nonmonotonically) entails that "Tux flies."
- We need a definition of \succ that valildates $A, A > B \succ B$ and $A, A > B, \neg B \mid \not\sim B$.

- We now have a truth definition and a monotonic entailment relation that tells us from facts about generic statements further true generic statements.
 - > That's pretty good!
- But we want to know what to infer from A, A > B.
- So we know that if "Birds fly" and "Fliers have wings" that "Birds have wings", but we do not know that "Birds fly, Tux is a bird" (nonmonotonically) entails that "Tux flies."
- We need a definition of \succ that valildates $A, A > B \succ B$ and $A, A > B, \neg B \mid \not\sim B$.
- We are inclined to just take all normal worlds and check what is going on there.
 - > However, this needs to be recursed. This is bonkers complicated.

Towards $\mid \sim$ (kudos to Alex Lascarides)

We want to nail down where we can use A > B, A to conclude B.
 We try to systematically eliminate abnormal premises.

Towards $\mid \sim$ (kudos to Alex Lascarides)

- We want to nail down where we can use A > B, A to conclude B.
 We try to systematically eliminate abnormal premises.
- $\circ~$ Let Γ be a finite set of formulae. Define:

Ant(Γ) = { $A \mid \Gamma \models A > B$ for some B}.

For any $A \in Ant(\Gamma)$ define:

$$\Gamma^{A} = \{(A > B) \to (A \to B) \mid \Gamma \models A > B\}.$$

Towards $\mid \sim$ (kudos to Alex Lascarides)

- We want to nail down where we can use A > B, A to conclude B.
 We try to systematically eliminate abnormal premises.
- $\circ~$ Let Γ be a finite set of formulae. Define:

Ant(Γ) = { $A \mid \Gamma \models A > B$ for some B}.

For any $A \in Ant(\Gamma)$ define:

$$\Gamma^{A} = \{(A > B) \to (A \to B) \mid \Gamma \models A > B\}.$$

• An immediate extension of Γ is any set Γ' such that $\Gamma' = \Gamma \cup \bigcup_{A \in T} \Gamma^A$ for some $T \subseteq Ant(\Gamma)$.

Towards $\mid \sim$ (kudos to Alex Lascarides)

- We want to nail down where we can use A > B, A to conclude B.
 We try to systematically eliminate abnormal premises.
- $\circ~$ Let Γ be a finite set of formulae. Define:

Ant(Γ) = { $A \mid \Gamma \models A > B$ for some B}.

For any $A \in Ant(\Gamma)$ define:

$$\Gamma^{A} = \{(A > B) \rightarrow (A \rightarrow B) \mid \Gamma \models A > B\}.$$

- An immediate extension of Γ is any set Γ' such that $\Gamma' = \Gamma \cup \bigcup_{A \in T} \Gamma^A$ for some $T \subseteq Ant(\Gamma)$.
- $\circ~$ An extension of Γ is an immediate extension of Γ or an immediate extension of an extension of $\Gamma.$

Commonsense Entailment

Propositional Commonsense Entailment $\Gamma \sim A$ iff $\Gamma^{\rightarrow} \models A$ for all maximally satisfiable extensions Γ^{\rightarrow} of Γ .

• Recall that \models is decidable; thus $\Gamma \triangleright A$ is decidable.

Propositional Commonsense Entailment

 $\Gamma \triangleright A$ iff $\Gamma^{\rightarrow} \models A$ for all maximally satisfiable extensions Γ^{\rightarrow} of Γ .

- Recall that \models is decidable; thus $\Gamma \triangleright A$ is decidable.
- It is easy to see that Defeasible Modus Ponens holds:
 - > $A, A > B \vdash B$ and $A, A > B, \neg B \vdash B$.
 - > But $A, A > B, C \sim B$ if C is not a defeater for B.
 - > Because without a defeater, $(A > B) \rightarrow (A \rightarrow B)$ is in every consistent extension.

Propositional Commonsense Entailment $\Gamma \sim A$ iff $\Gamma^{\rightarrow} \models A$ for all maximally satisfiable extensions Γ^{\rightarrow} of Γ .

• Recall that \models is decidable; thus $\Gamma \succ A$ is decidable.

- It is easy to see that Defeasible Modus Ponens holds:
 - > $A, A > B \vdash B$ and $A, A > B, \neg B \vdash B$.
 - > But $A, A > B, C \sim B$ if C is not a defeater for B.
 - > Because without a defeater, $(A > B) \rightarrow (A \rightarrow B)$ is in every consistent extension.
- Nixon Diamond:
 - $> A > B, C > \neg B, C, A \not\vdash B.$
 - $> A > B, C > \neg B, C, A \not \sim \neg B.$
 - > Because there are consistent extensions with *B* and with $\neg B$.

Commonsense Entailment

Specificity (kudos to Michael Morreau)

- We need one more lemma for the penguin principle:
- \models ($\square(P \rightarrow B) \land (B > F) \land (P > \neg F)$) → ($B > \neg P$). (Penguins are birds, birds fly, penguins do not fly. Thus, normal birds are not penguins.)

Specificity (kudos to Michael Morreau)

- We need one more lemma for the penguin principle:
- \models ($\square(P \rightarrow B) \land (B > F) \land (P > \neg F)$) → ($B > \neg P$). (Penguins are birds, birds fly, penguins do not fly. Thus, normal birds are not penguins.)
- \circ Proof:
 - Fix a model *M* and a world *w*. Assume the antecedent of the conditional.
 - Then $\llbracket P \rrbracket \subseteq \llbracket B \rrbracket$, i.e. $\llbracket B \rrbracket = (\llbracket B \rrbracket \setminus \llbracket P \rrbracket) \cup \llbracket P \rrbracket$.
 - Then $*(w, \llbracket B \rrbracket) \subseteq *(w, \llbracket B \rrbracket \setminus \llbracket P \rrbracket) \cup *(w, \llbracket P \rrbracket).$
 - Also $*(w, \llbracket P \rrbracket) \subseteq \llbracket \neg F \rrbracket$ and $*(w, \llbracket B \rrbracket) \subseteq \llbracket F \rrbracket$.
 - So $*(w, \llbracket P \rrbracket)$ and $*(w, \llbracket B \rrbracket)$ are disjoint.
 - Thus $*(w, \llbracket B \rrbracket) \subseteq *(w, \llbracket B \rrbracket \setminus \llbracket P \rrbracket).$
 - Hence $*(w, \llbracket B \rrbracket) \subseteq \llbracket B \rrbracket \setminus \llbracket P \rrbracket \subseteq \llbracket \neg P \rrbracket$.

Commonsense Entailment

• To show: $\Box(P \rightarrow B), B > F, P > \neg F, P \sim \neg F$.

- To show: □(P→B), B > F, P > ¬F, P |~ ¬F.
 (Penguins are Birds; Birds fly; Penguins don't fly; we have a penguin |~ it doesn't fly)
- Proof.
 - Let $\Gamma = \{\Box(P \to B), B > F, P > \neg F, P\}$. Then, Ant $(\Gamma) = \{A \mid \Gamma \models A > X \text{ for some } X\} = \{P, B\}.$
 - We know: $\models (\Box(P \rightarrow B) \land (B > F) \land (P > \neg F)) \rightarrow (B > \neg P).$
 - So $\Gamma \models B > \neg P$.
 - So it is inconsistent to extend Γ with the antecedent *B*: $\Gamma \cup \{(B > \varphi) \rightarrow (B \rightarrow \varphi) \mid \Gamma \models B > \varphi\} \models P \land \neg P.$
 - Thus *B* as an antecedent is defeated. All maximally consistent extensions of Γ contain $P \rightarrow \neg F$.
 - So we get $\Gamma \sim \neg F$.

Commonsense Entailment

- The idea is this: we construct a language for incomplete descriptions of SDRSs.
- So we need a language for "underspecified logical form" (ULF).
- We need a formal statement for "this SDRS is described by this ULF".

- $\circ~$ So what are the bits and pieces of an SDRS?
- DRSs
 - > Any DRS K is an "atom" (or, constant symbol).
 (you can underspecify these too, but I won't)
- Labels
 - > Take variable symbols for labels $I_1, I_2, ...$
- Coherence relations
 - > Take a constant symbol D_R for each coherence relation R
 - > Plus corresponding variable symbols $D_1, D_2, ...$

- We underspecify:
- What the contents are.
- Which contents are connected.
- How they are connected.
- Take two predicate symbols to describe assignment:
 - > labels(I,K)
 - > $relates(I_1, I_2, I_3, D)$
- And three to describe structure:
 - $> outscopes(I_1, I_2)$
 - $> accessible(I_1, I_2)$
 - $> last(l_1)$

- Anaphora are a type of underspecification.
- So take a constant symbol v_x for each DRT-variable x (do this for every type of variable).
- And add a predicate symbol:
 - > anaphor(I,v)

- Anaphora are a type of underspecification.
- So take a constant symbol v_x for each DRT-variable x (do this for every type of variable).
- And add a predicate symbol:
 - > anaphor(I,v)
- (If you extend the language to partially describe microstructure, you can write anaphora as x =? to indicate something like "x is not in the universe of K".)

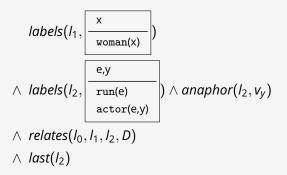
- $\circ~$ ULFs are constructed from surface form.
- (14) There is a woman.

$$labels(I_1, \frac{x}{woman(x)})$$

(15) She runs.

$$labels(l_2, \underbrace{\frac{e, y}{run(e)}}_{actor(e, y)}) \land anaphor(l_2, v_y)$$

(16) There is a woman. She runs.



- Add an (empirically sourced) vocabulary of linguistic cues to this language.
- o therefore → therefore(I)
- o and then → and-then(I)
- I hereby command → command(I)
- I hereby assert → inform(I)
- Including grammatical features:
- declarative(I)
- interrogative(I)
- imperative(I)

Plus tense, aspect, mood ... - anything useful from the grammar!

- The underspecified language has the formulas we seen so far, closed under the logical constants =, \neg , \lor and \land .
 - > This logic has no quantifiers. All variables are implicitly existentially closed.
- Call a formulae in this language an ULF (underspecified logical form).

- The underspecified language has the formulas we seen so far, closed under the logical constants =, \neg , \lor and \land .
 - > This logic has no quantifiers. All variables are implicitly existentially closed.
- Call a formulae in this language an ULF (underspecified logical form).
- Now, this is conceptually a bit weird, but not hard:
- We want to define a turnstile \models such that for an SDRS *S* and an ULF \mathcal{K} , $S \models \mathcal{K}$ iff all descriptions from \mathcal{K} are realised in *S*.

- Let $S = (\Pi, \mathcal{F}, L)$ be an SDRS and A be a function s.t.:
 - > for each variable I_i , $A(I_i) \in \Pi$
 - > for each variable D_i , $A(D_i)$ is some coherence relation.
 - > $A(D_R) = R$ for all coherence relations R
 - > $A(v_x) = x$ for all and DRT-variables x.
- $\circ~$ (i.e. the variables are implicitly existentially quantified)

• $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)
- $S, A \models last(I_1)$ iff $A(I_1) = L$.

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)
- $S, A \models last(I_1)$ iff $A(I_1) = L$.
- $S, A \models labels(l, K)$ iff $K \subseteq \mathcal{F}(A(l))$ and $\mathcal{F}(A(l))$ does not use relation symbols not in K.

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)
- $S, A \models last(I_1)$ iff $A(I_1) = L$.
- $S, A \models labels(l, K)$ iff $K \subseteq \mathcal{F}(A(l))$ and $\mathcal{F}(A(l))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)
- $S, A \models last(I_1)$ iff $A(I_1) = L$.
- $S, A \models labels(l, K)$ iff $K \subseteq \mathcal{F}(A(l))$ and $\mathcal{F}(A(l))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2)$ iff $A(I_2)$ outscopes (in S) $A(I_1)$.

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)
- $S, A \models last(I_1)$ iff $A(I_1) = L$.
- $S, A \models labels(l, K)$ iff $K \subseteq \mathcal{F}(A(l))$ and $\mathcal{F}(A(l))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2)$ iff $A(I_2)$ outscopes (in S) $A(I_1)$.
- $S, A \models accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.
 - > This is the right frontier. See Wednesday slides.

- $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)
- $S, A \models last(I_1)$ iff $A(I_1) = L$.
- $S, A \models labels(l, K)$ iff $K \subseteq \mathcal{F}(A(l))$ and $\mathcal{F}(A(l))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2)$ iff $A(I_2)$ outscopes (in S) $A(I_1)$.
- $S, A \models accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.
 - > This is the right frontier. See Wednesday slides.
- $S, A \models anaphor(l, v)$ iff there is a DRT variable *z* introduced in some segment $\lambda \in \Pi$ (of *S*) such that

• $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)

•
$$S, A \models last(I_1)$$
 iff $A(I_1) = L$.

- $S, A \models labels(l, K)$ iff $K \subseteq \mathcal{F}(A(l))$ and $\mathcal{F}(A(l))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2)$ iff $A(I_2)$ outscopes (in S) $A(I_1)$.
- $S, A \models accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.
 - > This is the right frontier. See Wednesday slides.
- $S, A \models anaphor(l, v)$ iff there is a DRT variable *z* introduced in some segment $\lambda \in \Pi$ (of *S*) such that
 - i. there is a relation *R* and labels α and β st $\mathcal{F}(\alpha)$ has a conjunct $R(\beta, A(I))$;
 - ii. $\,\lambda$ is accessible to $\beta {\rm ;}\,{\rm and}\,$
 - iii. $\mathcal{F}(A(l))$ has a condition A(v) = z.

• $S, A \models x = y$ iff A(x) = A(y) (for any variables or constants x, y)

•
$$S, A \models last(I_1)$$
 iff $A(I_1) = L$.

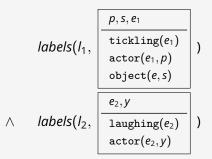
- $S, A \models labels(l, K)$ iff $K \subseteq \mathcal{F}(A(l))$ and $\mathcal{F}(A(l))$ does not use relation symbols not in K.
- $S, A \models relates(I_1, I_2, I_3, D)$ iff $A(D)(A(I_2), A(I_3))$ is a conjunct of $\mathcal{F}(A(I_1))$.
- $S, A \models outscopes(I_1, I_2)$ iff $A(I_2)$ outscopes (in S) $A(I_1)$.
- $S, A \models accessible(I_1, I_2)$ iff $A(I_1)$ is accessible (in S) from $A(I_2)$.
 - > This is the right frontier. See Wednesday slides.
- $S, A \models anaphor(l, v)$ iff there is a DRT variable *z* introduced in some segment $\lambda \in \Pi$ (of *S*) such that
 - i. there is a relation *R* and labels α and β st $\mathcal{F}(\alpha)$ has a conjunct $R(\beta, A(I))$;
 - ii. λ is accessible to $\beta \text{; and}$
 - iii. $\mathcal{F}(A(I))$ has a condition A(v) = z.
- If cue(I) is a linguistic cue predicate, $S, A \models cue(I)$ always.

The ULF language has no world model. It is not about the world, it is only about the construction of SDRSs.

Linguistic Form to Coherence Structure

- So, given the linguistic form of a discourse, we:
 - > Compute for every *clause* the corresponding DRS K (by the DRT construction algo), except that we don't resolve anaphora here.
 - > Pick an unused label variable I_1 and add $labels(I_1, K)$.
 - > (If there is an ambiguity, you can also add $labels(I_1, K) \lor labels(I_1, K')$).
 - > For every anaphor x in K add $anaphor(I_1, v_x)$.
 - > Add appropriate predicates on / for cue phrases and linguistic features (aspect etc.).
 - For every clause except the very first one, pick another two unused label variables *I*₀, *I*₂ and add *relates*(*I*₀, *I*₂, *I*₁, *D*) (i.e. *I*₁ attaches somewhere)
- $\circ~$ Call the conjunction of all these ${\cal K}.$

(17) Phil tickled Stanley. He laughed.



$$\wedge$$
 anaphor(I_2, v_y)

$$\wedge$$
 relates(I_0, I_1, I_2, D)

 \land last(I_2)

(17) Phil tickled Stanley. He laughed.

$$A(I_0) = \pi_0, A(I_1) = \pi_1$$

$$A(I_2) = \pi_2, A(D) = Result$$

$$\Pi = \{\pi_0, \pi_1, \pi_2\}, L = \pi_2$$

$$Iabels(I_1, \begin{bmatrix} p, s, e_1 \\ tickling(e_1) \\ actor(e_1, p) \\ object(e, s) \end{bmatrix}$$

$$F(\pi_1) = \begin{bmatrix} p, s, e_1 \\ tickling(e) \\ actor(e_1, p) \\ object(e, s) \end{bmatrix}$$

$$\models \land Iabels(I_2, \begin{bmatrix} e_2, y \\ laughing(e_2) \\ actor(e_2, y) \end{bmatrix}$$

$$\mathcal{F}(\pi_2) = \begin{bmatrix} e_2, y \\ laughing(e_2) \\ actor(e_2, x) \\ y = s \end{bmatrix}$$

$$\land anaphor(I_2, v_y)$$

$$\land relates(I_0, I_1, I_2, D)$$

$$\land Iast(I_2)$$

)

)

(17) Phil tickled Stanley. He laughed.

$$A(l_{0}) = \pi_{0}, A(l_{1}) = \pi_{1}$$

$$A(l_{2}) = \pi_{2}, A(D) = Correction$$

$$\Pi = \{\pi_{0}, \pi_{1}, \pi_{2}\}, L = \pi_{2}$$

$$Iabels(l_{1}, \begin{bmatrix} p, s, e_{1} \\ tickling(e_{1}) \\ actor(e_{1}, p) \\ object(e, s) \end{bmatrix}$$

$$\models \land Iabels(l_{2}, \begin{bmatrix} e_{2}, y \\ laughing(e_{2}) \\ actor(e_{2}, x) \\ y = p \end{bmatrix}$$

$$\land anaphor(l_{2}, v_{y})$$

$$\land relates(l_{0}, l_{1}, l_{2}, D)$$

$$\mathcal{F}(\pi_{0}) = Correction(\pi_{1}, \pi_{2})$$

- The underspecified information that we get *directly* from the linguistic form needs to be *enriched* with more information.
 - > Pragmatic, world knowledge, cue phrases need to be interpreted...
- So we use Commonsense Entailment again to phrase a *logic for enrichment of ULFs*.
- It's called the Glue Logic (GL).

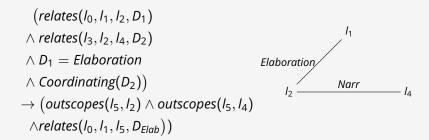
- $\circ~$ The Glue Language is obtained from the underspecified language by adding the connectives \rightarrow and >.
 - > still no quantifiers
- Moreover, the Glue Language contains additional predicates for world knowledge
 - > cause (e_1, e_2) for " e_1 causes e_2 ".
- Commonsense entailment really only works on decidable logics.
- DRT-Entailment is not decidable, so we still only use *K*'s as *tokens*—we only know them by their description, but have no *truth-conditional* knowledge of their *meaning* in this logic.
 - > 'cause(e₁, e₂)' is a single propositional atom. We could (maybe should) write it as p_{cause(e₁,e₂)}.

- In the Glue language, we *hard-code* "rational assumptions" about how discourses are typically interpreted.
- A script for occasion is a Glue formula to infer occasion from content-level information (i.e. from descriptions of DRSs):

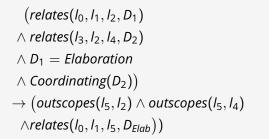
- In the Glue language, we *hard-code* "rational assumptions" about how discourses are typically interpreted.
- A script for occasion is a Glue formula to infer occasion from content-level information (i.e. from descriptions of DRSs):
- One suggested by Asher & Lascarides: $relates(I_0, I_1, I_2, D)$ $\land labels(I_1, K_1) \land fall(e_1, x_1) \in K_1$ $\land labels(I_2, K_2) \land help-up(e_2, x_2, x_3) \in K_2$ $> occasion(e_1, e_2)$
- ∘ *relates*(I_0, I_1, I_2, D) ∧ *occasion*(I_1, I_2) > Narration(I_1, I_2)
- (I use italics for Glue predicates and monospace for tokenised DRT predicates; AL2003 use brackets, e.g. [*fall*])

- The Big Problem of Formal Pragmatics: how do these things generalise?
- At the current state of research, we can describe mechanisms for pragmatic inference.
- But we need to hard code world knowledge, lexical knowledge etc.
- Part of our mechanisms is also a language for hard-coding.

- $\circ~$ We also encode certain stipulation about what is a "good" story.
- For example, that sub-stories form complex segments.

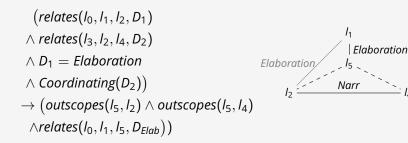


- $\circ~$ We also encode certain stipulation about what is a "good" story.
- For example, that sub-stories form complex segments.





- $\circ~$ We also encode certain stipulation about what is a "good" story.
- For example, that sub-stories form complex segments.



- SDRT typically includes Glue axioms that state if all semantic consequences of a relation obtain (and this is known to the Glue logic), then the relation is inferred.
- ("the totality of necessary consequences is typically sufficient")
- $labels(I_1, K_1) \land labels(I_2, K_2) \land relates(I_0, I_1, I_2, R) \land cause(e_2, e_1) > R = D_{Explanation}.$
- $labels(I_1, K_1) \land labels(I_2, K_2) \land relates(I_0, I_1, I_2, R) \land cause(e_1, e_2) > R = D_{Result}.$

- Hereinafter, I will make our lives a bit easier, where possible: > $R(\alpha, \beta) \wedge cause(\beta, \alpha) > R = Explanation.$
- Typical abbreviation in SDRT papers:
 λ :?(α, β) ∧ cause(K_β, K_α) > λ : Explanation(α, β).

• You don't have to do *everything* by piecemeal. $\Box(R(\alpha,\beta) \land subord(R) \rightarrow (R'(\alpha,\beta) \rightarrow \neg coord(R')))$

• You don't have to do *everything* by piecemeal.

 $\Box(R(\alpha,\beta) \land \mathsf{subord}(R) \to (R'(\alpha,\beta) \to \neg \mathsf{coord}(R')))$

 $\begin{array}{l} R(\alpha,\beta) \wedge \textit{eventive}(\alpha) \wedge \textit{stative}(\beta) > R = \textit{Background}_{bck} \\ R(\alpha,\beta) \wedge \textit{stative}(\alpha) \wedge \textit{eventive}(\beta) > R = \textit{Background}_{fwd} \\ R(\alpha,\beta) \wedge \textit{stative}(\alpha) \wedge \textit{stative}(\beta) > R = \textit{BG}_{fwd} \lor R = \textit{BG}_{bck} \end{array}$

• You get this for free:

 $R(\alpha, \beta) \wedge stative(\beta) > \neg (R = Result)$

• But not this:

 $R(\alpha, \beta) \wedge stative(\alpha) > \neg (R = Explanation)$

- Monotonic cues: $(R(\alpha, \beta) \land therefore(\beta)) \rightarrow R = Result$ $(R(\alpha, \beta) \land and-then(\beta)) \rightarrow R = Narration$
- Performatives: $assertoric(\pi) \rightarrow ((R(\lambda, \pi) \land right-veridical(R)) \lor (R(\pi, \lambda) \land left-verdicial(R))).$
- Defeasible cues: declarative(π) > assertoric(π) (R(α, β) ∧ and(β)) > coord(R)

 $\circ~$ It is rational to interpret a response to a question as an answer:

 $(R(\alpha, \beta) \land interrogative(\alpha) \land declarative(\beta) \land$ $spk(\alpha) \neq spk(\beta)) > R = Indirect Question Answer Pair$

(18) a. A: Is John going out tonight? b. B: I saw him dress up earlier.

(19) a. A: Why is seaweed good for you? b. B: Lots of vitamins. $\circ~$ It is rational to interpret a response to a question as an answer:

 $(R(\alpha, \beta) \land interrogative(\alpha) \land declarative(\beta) \land$ $spk(\alpha) \neq spk(\beta)) > R = Indirect Question Answer Pair$

(18) a. A: Is John going out tonight? b. B: I saw him dress up earlier.

- (19) a. A: Why is seaweed good for you? b. B: Lots of vitamins.
 - A question after a declarative should ask something about it:

 $(R(\alpha, \beta) \land declarative(\alpha) \land interrogative(\beta) \land$ $spk(\alpha) \neq spk(\beta)) > R = Elaborating-Question$

• The following are Glue logic axioms:

 $(relates(I_0, I_1, I_2, D_{Explanation}) \land labels(I_1, K_1) \land labels(I_2, K_2))$ $\rightarrow \neg before(I_1, I_2) \land cause(e_2, e_1).$

 $(relates(I_0, I_1, I_2, D_{Narration}) \rightarrow before(I_1, I_2) \land occasion(I_1, I_2).$

- So if we already have inferred a relation, we learn a bit more about the label contents.
 - > This is in spite of us not having proper access to these contents.
- We do this by encoding *our* knowledge about meaning postulates in such Glue axioms.
 - > Have to do this because the Glue logic does *not* know the postulates.

SDRT-Update

are interpreted to

Glue Axioms	enrich⇒ ⇔include	ULES (partially describe content)	
(stipulations about interpretation)		are specified to	
interpretation		SDRSs (describe coherence structure)	
		are converted to	
		DRSS (describe event structure)	
		are evaluated in	
SDRT-Update		Models	

50 / 62

Linguistic Forms

are interpreted to

Glue Axioms	enrich⇒ <i>⇔include</i>	ULFs (partially describe content)
(stipulations about interpretation)		are specified to
interpretation		SDRSs (describe coherence structure)
		are converted to
		DRSS (describe event structure)
		√ are evaluated in
SDRT-Update		Models

are interpreted to

Glue Axioms	enrich⇒ ⇔include	ULFs (partially describe content)
(stipulations about interpretation)		are specified to
interpretation		SDRSs (describe coherence structure)
		✓ are converted to
		DRSs (describe event structure)
		√ are evaluated in
SDRT-Update		Models

50 / 62

 \checkmark are interpreted to

Glue Axioms	enrich⇒ ∉include	ULFs (partially describe content)	
(stipulations about interpretation)		are specified to	
interpretation		SDRSs (describe coherence structure)	
		\checkmark are converted to	
		DRSS (describe event structure)	
		√ are evaluated in	
SDRT-Update		Models	50

50 / 62

✓ are interpreted to

Glue Axioms

$\checkmark^{enrich}_{\leftarrow include}$

ULFs (partially describe content)

(stipulations about interpretation)

are specified to

SDRSs (describe coherence structure)

√are converted to

DRSs (describe event structure)

√are evaluated in

Models

SDRT-Update

✓ are interpreted to

Glue Axioms

$\checkmark^{enrich}_{\leftarrow include}$

ULFs (partially describe content)

(stipulations about interpretation)

are specified to

SDRSs (describe coherence structure)

✓ are converted to

DRSs (describe event structure)

√are evaluated in

Models

SDRT-Update

Construction of SDRSs (overview)

- Context (the information contained in the prior discourse) may contain underspecified / defeasible information.
- $\circ~$ Thus, the context is a big ULF formula Γ (possibly empty).
 - > If you so desire, let the context be set σ of SDRSs. Then define Γ to be the ULF that describes them all ($\Gamma = Th(\sigma)$, in the book).

- Context (the information contained in the prior discourse) may contain underspecified / defeasible information.
- $\circ~$ Thus, the context is a big ULF formula Γ (possibly empty).
 - > If you so desire, let the context be set σ of SDRSs. Then define Γ to be the ULF that describes them all ($\Gamma = Th(\sigma)$, in the book).
- Now, let \mathcal{K} a ULF representing new information. Let I_{new} be a label variable not not used in Γ. Then define:
- $update(\Gamma, I_{new} : \mathcal{K})$ is the set of all (and only) those pairs (*S*, *A*) (*S* an SDRS; *A* an assignment) where $L = A(I_{new})$ and that satisfy the defeasible consequences of attaching \mathcal{K} to some available segment in Γ .

- Let I_{new} be a label variable not used in Γ .
- Let R_n , I_1 and I_2 be variables not used in Γ .
- \circ Let *I*_λ be the "last" label in Γ (i.e. the *I*_{new} from the last update).
 - > Can also define this as the "accessibility-minimal" label.
- Then: (S, A) ∈ update(Γ, I_{new} : K) iff
 S = (Π, F, L), is an interpretable SDRS with L = A(I_{new}), and for all formulae φ of the underspecified language (if Γ ≠ Ø):
 If Γ∧K∧relates(I₁, I₂, I_{new}, R_n)∧accessible(I₂, I_λ) |~ φ, then S, A ⊨ φ.

(if
$$\Gamma = \emptyset$$
): If $\mathcal{K} \models \varphi$, then $S, A \models \varphi$.

- Let I_{new} be a label variable not used in Γ .
- Let R_n , I_1 and I_2 be variables not used in Γ .
- \circ Let *I*_λ be the "last" label in Γ (i.e. the *I*_{new} from the last update).
 - > Can also define this as the "accessibility-minimal" label.
- Then: $(S, A) \in update(\Gamma, I_{new} : \mathcal{K})$ iff $S = (\Pi, \mathcal{F}, L)$, is an interpretable SDRS with $L = A(I_{new})$, and for all formulae φ of the underspecified language (if $\Gamma \neq \emptyset$):

If $\Gamma \land \mathcal{K} \land relates(I_1, I_2, I_{new}, R_n) \land accessible(I_2, I_\lambda) \succ \varphi$, then S, $A \models \varphi$.

(if $\Gamma = \emptyset$): If $\mathcal{K} \succ \varphi$, then $S, A \models \varphi$.

good enough?

SDRT-Update

- We do not expect to arrive at *one* fully specified SDRS.
- A context will almost-always contain a certain amount of underspecification.
 - > When we assign a single SDRS to a discourse we are to some degree using our magic human powers of interpretation.
- In addition, even if we get a single SDRS, the next utterance might require us to revise.
- So, *officially*, we consider a context to be the ULF that represents *only* the linguistic information of a linguistic form.
- We compute all the Glue-consequences anew *every time*.

- There may be a *lot* of SDRSs in *update*(Γ , π : \mathcal{K}).
- We want to pick out the "best" ones.
- Intuitively, some ways of structuring a discourse "tell a better story" than others.
- We'll call the good ones "most coherent" and formalise conditions on what such coherence might be.

MDC

An SDRS *K* is at least as coherent as an SDRS *K*', *K*' \leq^{c} *K*, if and only if all of the following hold:

- 1. *Prefer consistency:* If *K*′ is consistent, then so is *K*.
- 2. *Prefer rich structure: K* has at least as many coherence relations as *K*'.
- 3. *Prefer resolution: K* binds (over accommodates) at least as many presuppositions as *K*[′] does.
- 4. *Prefer better relations:* For every rhetorical relation $R(\pi_1, \pi_2)$ that K' and K share: $R(\pi_1, \pi_2)$ is at least as coherent in K as it is in K'.
- 5. *Prefer flat structure: K* has at most as many labels as *K*' unless *K*' has a *semantic clash* and *K* does not.

(these are "global" conditions and cannot be put as glue axioms)

- $\circ\;$ A semantic clash is a conflict of veridicality.
- (20) a. π_1 : If a shepherd goes to the mountains, π_2 : he will bring his dog.

 π_3 : He brings a good walking stick too.

✓b.
$$\pi_0$$
: Consequence (π_1, π)

 π : Parallel(π_2, π_3)

Xc. π_0 : Consequence $(\pi_1, \pi_2) \land Parallel(\pi_2, \pi_3)$

- Topic (Continuation & Narration) is scalar:
- (21) a. Düsseldorf is the birth place of Heinrich Heine.
 - ? Düsseldorf has a university.
 - b. Düsseldorf is the birth place of Heinrich Heine. Its university is named after him.
 - Contrast is scalar:
- (22) a. John loves opera, but hates musicals.?b. John loves opera, but likes musicals.
- (23) a. John had pocket aces, but lost.
 - ?b. John had a pair, but lost.

- Sometimes the "better relation" decides some underspecified element.
- (24) I thought Arshak was on the river. He was at the bank.

- Sometimes the "better relation" decides some underspecified element.
- (24) I thought Arshak was on the river. He was at the bank.
- (25) I thought Arshak was on the river and he was at the bank.
- (26) I thought Arshak was on the river, but he was at the bank.

A Framework, not an Answer to Everything

- Clearly, I have not given you a (even nearly) complete set of construction principles.
- (27) I gave Arpine a dozen roses. She was thrilled.
 - We have a preference to interpret possible causes to Result.
 - But this preference is overridden by statives usually not being Results.
 - Another preference, that eventive–stative constructions are usually Background "wins" here.
 - What kind of Glue axiom would "defeat" that preference?

are interpreted to

Axioms $\stackrel{enrich \Rightarrow}{\leftarrow include}$ ULFs (partially describe dragon of the specified to dragon of the spe	content)
selects SDRSS (describe coherence for are converted to	
	nverted to

DRSs (describe event structure)

are evaluated in

Models

- We have a good theory of what discourse structure is, how it is evaluated, and how it is constructed.
- It is still open what the coherence relations are, what exactly they mean, and how exactly they are inferred.

DONE!

... but still so much to do.