Anaphora and Ambiguity in Narratives

Daniel Altshuler, Hampshire College Julian J. Schlöder, University of Amsterdam ESSLLI 2019, Day 3

- $\circ~$ SDRT is a formal, integrated theory of coherence relations.
 - > What coherence relations mean.
 - > How coherence structures (graphs) are constructed.
- $\circ\;$ Two main component logics:
- Logic of Information Content for the truth-conditional semantics of graphs.
 - > Logical form, meaning.
- Glue Logic to construct these logical forms.
 - > Underspecification, construction.

- $\circ~$ SDRT is a formal, integrated theory of coherence relations.
 - > What coherence relations mean.
 - > How coherence structures (graphs) are constructed.
- Two main component logics:
- Logic of Information Content for the truth-conditional semantics of graphs.
 - > Logical form, meaning.
- Glue Logic to construct these logical forms.
 - > Underspecification, construction.

0	Natural Language Discourses	\rightsquigarrow	Representations	\mapsto	Models
---	-----------------------------	--------------------	-----------------	-----------	--------

 \rightsquigarrow := the construction algorithm,

 \mapsto := a truth-conditional model-theoretic *embedding*.

Complex Discourse Units

- (1) a. Arash doesn't trust Akna.
 - b. She promised to help him once,
 - c. and then later forgot about it.

- (2) a. John overslept.
 - b. So he missed his flight.
 - c. So he got angry at himself.
- (3) a. John overslept.
 - b. So he missed his flight.
 - c. So he took a train.

- b. So he missed his flight.
- c. So he bought an alarm clock.

Complex Discourse Units

The Right Frontier

Anaphora follow coherence structure

The anaphora-accessible referents are on the right-most nodes of the graphed discourse structure.

- $\circ~$ DRT does not (always) make the right predictions for an aphora.
- (8) a. John dropped off his car for repairs.
 - b. Then he got a rental.
 - c. It had a broken fuel pump.
- DRT: flat structure.
 - > his car available for it.
- coherence relations: complex structure.
 - > Narration(a,b) blocks this binding.

(a) <u>Narration</u> (b) Background

The Right Frontier

- We assign truth conditional meaning postulates to the coherence relations themselves.
 - > These postulates tell us something about the constituent units of a relation.
- (this is in fact perfectly analogous to "modes of composition" in Fregean-Montogovian semantics)

- The Big Picture:
- Discourse logical forms are built from two languages:
 - > Microstructure (clause level, EDUs)
 - > Macrostructure (discourse level, CDUs)

Microstructure Vocabulary

Variables $(x, y, ..., e_1, e_2, ...)$; Name symbols (John, Max, ...); Predicate symbols (eat, overlap, actor, ...); connectives $(=, \Rightarrow, \neg, \Diamond)$.

Microstructure Formulas (DRSs)

A DRS is a tuple $\langle U, Cond \rangle$ where U is a set of variables, and Cond is a set of conditions.

- For a name N and a variable x, N(x) is a condition.
- For a predicate *P* and variables *x*₁, ..., *x_n*, *P*(*x*₁, ..., *x_n*) is a condition.
- For variables x and y, x = y is a condition.
- ∘ If C_1 and C_2 are DRSs, $C_1 \Rightarrow C_2$, $\neg C_1$ and $\Diamond C_1$ are conditions.

(add more as needed!)

 $\circ\;$ I'll use a lot of event variables for neo-Davidsonian semantics.

• Plan: Macrostructure formulas contain labels for other formulas and state how the labelled contents form a discourse.

Macrostructure Vocabulary

DRSs; coherence relation symbols (Elaboration, Narration, ...); label variables (π , λ , ...); logical connectives (\neg , \Rightarrow , \land , \Diamond).

Macrostructure Formulas

- Any DRS K is a macrostructure formula. (DRSs are like the atoms of the macrostructure)
- For a coherence relation *R* and label variables α , β , $R(\alpha, \beta)$ is a macrostructure formula.
- If *P* and *Q* are macrostructure formulae, then so are *P* ∧ *Q*, ¬*P*, $\Diamond P, P \Rightarrow Q$.

Segmented Discourse Representation Structure

An SDRS is a triple (Π, \mathcal{F}, L) where Π is a set of label variables, $L \in \Pi$ and \mathcal{F} is a function from Π to the macrostructure formulae such that for any $\pi \in \Pi$, either:

- $\mathcal{F}(\pi) = K$ for some DRS K (microstructure).
- *F*(π) is a conjunction of formulas of the form *R*(α, β) (where α, β ∈ Π).
- Typically π : *K* abbreviates $\mathcal{F}(\pi) = K$.
- \circ Typically π_0 denotes the CDU constituting the full discourse.
- *L* is the right-most or *last* label: the label for the discourse-final clause (in the linear surface order).

(9) a. John overslept.

- b. So he missed his flight.
- c. So he took a train.

$$\mathcal{F}(\pi_a) = \llbracket (a) \rrbracket \\ \mathcal{F}(\pi_b) = \llbracket (b) \rrbracket \\ \mathcal{F}(\pi_c) = \llbracket (c) \rrbracket \\ \mathcal{F}(\pi_0) = \operatorname{Result}(\pi_a, \pi_b) \wedge \operatorname{Result}(\pi_b, \pi_c)$$

(10) a. John overslept.

- b. So he missed his flight.
- c. So he bought an alarm clock.

$$\mathcal{F}(\pi_a) = \llbracket (a) \rrbracket$$
$$\mathcal{F}(\pi_b) = \llbracket (b) \rrbracket$$
$$\mathcal{F}(\pi_c) = \llbracket (c) \rrbracket$$
$$\mathcal{F}(\pi_0) = \text{Result}(\pi, \pi_c)$$
$$\mathcal{F}(\pi) = \text{Result}(\pi_a, \pi_b)$$

What about the Right Frontier?

• Some more definitions:

Outscoping

- $\circ~$ Note that ${\cal F}$ induces an order on $\Pi.$
- Say that $\alpha < \beta$ iff α occurs in $\mathcal{F}(\beta)$.
- $\circ~$ Let \prec denote the reflexive transitive closure of <.
- Call this relation "outscoping".

What about the Right Frontier?

• Some more definitions:

Outscoping

- Note that \mathcal{F} induces an order on Π.
- Say that $\alpha < \beta$ iff α occurs in $\mathcal{F}(\beta)$.
- $\circ~$ Let \prec denote the reflexive transitive closure of <.
- Call this relation "outscoping".

Interpretable SDRS

- $\circ~$ A SDRS ($\Pi, \mathcal{F}, \textit{L})$ is well formed if:
- $\circ~$ There is a unique outscoping-maximal label in Π ("root").
- $\circ \ \prec$ is anti-symmetric (in particular, then, it has no circles)

$\circ~$ Let $(\Pi, \mathcal{F}, \textit{L})$ be a well-formed SDRS.

SDRT-Accessibility

Accessibility is defined recursively:

- *L* is accessible.
- $\circ \ \, {\rm If} \ \, \alpha \ {\rm is \ accessible \ and } \ \alpha \prec \beta {\rm , \ then } \ \, \beta \ {\rm is \ accessible .}$
- If (i) α is accessible, and
 (ii) R(β, α) occurs in some F(γ), and
 (iii) R is subordinating
 then β is accessible.

 $L = \pi_c$ $\mathcal{F}(\pi_a) = \llbracket (a) \rrbracket$ $\mathcal{F}(\pi_b) = \llbracket (b) \rrbracket$ $\mathcal{F}(\pi_c) = \llbracket (c) \rrbracket$ $\mathcal{F}(\pi_0) = \text{Narration}(\pi_a, \pi_b) \land \text{Background}(\pi_b, \pi_c)$

(11) a. John dropped off his car for repairs.

- b. Then he got a rental.
- c. It had a broken fuel pump.

$$L = \pi_{c}$$

$$\mathcal{F}(\pi_{a}) = \llbracket(a)\rrbracket$$

$$\mathcal{F}(\pi_{b}) = \llbracket(b)\rrbracket$$

$$\mathcal{F}(\pi_{c}) = \llbracket(c)\rrbracket$$

$$\mathcal{F}(\pi_{0}) = \text{Narration}(\pi_{a}, \pi_{b}) \land \text{Background}(\pi_{b}, \pi_{c})$$

(12) a. John overslept.

- b. So he missed his flight.
- c. So he got angry at himself.

$$L = \pi_c$$

$$\mathcal{F}(\pi_a) = \llbracket (a) \rrbracket$$

$$\mathcal{F}(\pi_b) = \llbracket (b) \rrbracket$$

$$\mathcal{F}(\pi_c) = \llbracket (c) \rrbracket$$

$$\mathcal{F}(\pi_0) = \text{Result}(\pi_b, \pi_c)$$

$$\mathcal{F}(\pi) = \text{Result}(\pi_a, \pi)$$

(12) a. John overslept.

- b. So he missed his flight.
- c. So he got angry at himself.

$$L = \pi_c$$

$$\begin{aligned} \mathcal{F}(\pi_a) &= \llbracket (a) \rrbracket \\ \mathcal{F}(\pi_b) &= \llbracket (b) \rrbracket \\ \mathcal{F}(\pi_c) &= \llbracket (c) \rrbracket \\ \mathcal{F}(\pi_0) &= \text{Result}(\pi_b, \pi_c) \\ \mathcal{F}(\pi_-) &= \text{Result}(\pi_a, \pi) \end{aligned}$$

- Elementary Discourse Units are Discourse Representation Structures.
- Segmented Discourse Representation Structures are discourse structures on top of these EDUs
- EDUs (microstructure) are constructed by the DRS construction algorithm.
- Within EDUs, anaphora are guided by DRT-accessibility.
- *Across* EDUs, anaphora are guided by the right frontier.

- We already know how to evaluate DRSs.
- We recursively translate a macrostructure formula *P* into a *microstructure K* such that update with *K* represents the information in *P* (not as hard as it sounds!).

Linguistic Forms

are interpreted to

SDRSs describe discourse structure

are converted to

DRSs describe event structure

are evaluated in

Models

- A bit of notation:
- For two DRSs $K_1 = \langle U_1, C_1 \rangle$, $K_2 = \langle U_2, C_2 \rangle$, define $K_1 + K_2 = \langle U_1 \cup U_2, C_1 \cup C_2 \rangle$.

Macrostructure-to-Microstructure

Given an SDRS $S = (\Pi, \mathcal{F}, L)$, translate a macro formula P to a DRS $\llbracket P \rrbracket^{S}$ (say, P interpreted in the discourse structure S).

1. If
$$P = K$$
 for a DRS K , then $\llbracket P \rrbracket^{S} = K$.
2a. If $P = Q_{1} \land Q_{2}$, then $\llbracket P \rrbracket^{S} = \llbracket Q_{1} \rrbracket^{S} + \llbracket Q_{2} \rrbracket^{S}$.
2b. If $P = \neg Q$, then $\llbracket P \rrbracket^{S} = \boxed{\neg \llbracket Q \rrbracket^{S}}$
2c. If $P = \Diamond Q$, then $\llbracket P \rrbracket^{S} = \boxed{\Diamond \llbracket Q \rrbracket^{S}}$
2d. If $P = Q_{1} > Q_{2}$, then $\llbracket P \rrbracket^{S} = \boxed{\llbracket Q_{1} \rrbracket^{S} \Rightarrow \llbracket Q_{2} \rrbracket^{S}}$.
3. If $P = R(\alpha, \beta)$ for a coherence relation R , then

3. If $P = R(\alpha, \beta)$ for a coherence relation R, then $\llbracket P \rrbracket^{S} = \llbracket Info_{R}(\mathcal{F}(\alpha), \mathcal{F}(\beta)) \rrbracket^{S}$

where $Info_R$ is the specific semantic contribution provided by the relation R (a meaning postulate).

- Most coherence relations are veridical: they compose to content that entails their parts.
- If *R* is veridical, $\llbracket Info_R(\alpha,\beta) \rrbracket^S = \llbracket \mathcal{F}(\alpha) \land \mathcal{F}(\beta) \land Info'_R(\mathcal{F}(\alpha),\mathcal{F}(\beta)) \rrbracket^S$ where $Info'_R$ is the specific semantic contribution provided by the relation *R* (a meaning postulate).
- Not all are veridical.

- Note that "microstructure" is just about clauses.
- Recall that we associated events with verb phrases.
- Let's call the event associated with the main verb phrase of a clause its semantic index.
- Let's refer to the semantic index of a microstructure $K e_K$.
- Or, if *K* is labelled by π , also e_{π} .

- Elaboration is veridical and adds that the second content *typically* entails the first, but not vice versa, and that the evens overlap:
 - > "typically entails" \rightarrow tomorrow, Friday.

$$\begin{aligned} \textit{Info}_{\mathsf{Elab}}'(\mathcal{F}(\alpha), \mathcal{F}(\beta)) &= & \mathcal{F}(\beta) > \mathcal{F}(\alpha) \\ & & \wedge \neg (\mathcal{F}(\alpha) > \mathcal{F}(\beta)) \\ & & \wedge \boxed{\boxed{\texttt{part-of}(e_{\beta}, e_{\alpha})}} \end{aligned}$$

- (13) a. John had a great meal.
 - b. He had salmon.
 - c. And he had cheese.
 - Do salmon and cheese individually suffice for a great meal, or are they only jointly a great meal

• Wait, Julian, what about CDUs that are parts of further coherence relations?
- Wait, Julian, what about CDUs that are parts of further coherence relations?
- I'm glad you ask: we also need to assign non-microstructure events a semantic index. So, technically:

$$Info'_{\mathsf{Elab}}(\mathcal{F}(\alpha), \mathcal{F}(\beta)) = \qquad \mathcal{F}(\beta) > \mathcal{F}(\alpha) \\ \wedge \neg(\mathcal{F}(\alpha) > \mathcal{F}(\beta)) \\ \wedge \boxed{\frac{e}{part - of(e_{\beta}, e_{\alpha})}}_{e = e_{\alpha}}$$

- Actually, if we are being *super* precise, we need to keep track of which label in the SDRS we are evaluating gave rise to this *Info*_{Elab} so that we can assign *e* to that label.
- So we *should* write this: (keeping track of which label the relation belongs to)
- 3. $f[[\pi : R(\alpha, \beta)]]^{S}_{M,w}g$ iff $f[[Info_{R}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta))]]^{S}_{M,w}g$.

$$Info'_{\mathsf{Elab}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = \qquad \mathcal{F}(\beta) > \mathcal{F}(\alpha) \\ \wedge \neg (\mathcal{F}(\alpha) > \mathcal{F}(\beta)) \\ \wedge \left[\frac{e_{\pi}}{\Pr^{\mathsf{part-of}(e_{\beta}, e_{\alpha})}}_{e_{\pi} = e_{\alpha}} \right]$$

- $(K_{\alpha} \sqcap K_{\beta})^{e_{\pi}}$ is the DRS with index e_{π} that records 'the common content' of K_{α} and K_{β} .
 - > Asher & Lascarides 2003: "very difficult to define in practice".

- $(K_{\alpha} \sqcap K_{\beta})^{e_{\pi}}$ is the DRS with index e_{π} that records 'the common content' of K_{α} and K_{β} .
 - > Asher & Lascarides 2003: "very difficult to define in practice".
- An approximation:
- For a DRS *K*, let K^e be like *K* where the semantic index of *K* has been uniformly replaced by *e*. Define $(K_{\alpha} \sqcap K_{\beta})^{e_{\pi}} = K_{\alpha}^{e_{\pi}} \cap K_{\beta}^{e_{\pi}}$

• Continuation is the simplest topic relation.

$$Info'_{\text{Continuation}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = \begin{cases} \frac{e_{\pi}}{\operatorname{part-of}(e_{\alpha}, e_{\pi})} \\ \operatorname{part-of}(e_{\beta}, e_{\pi}) \\ (K_{\alpha} \sqcap K_{\beta})^{e_{\pi}} \end{cases}$$

• Continuation is the simplest topic relation.

$$Info'_{\text{Continuation}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = \begin{cases} \frac{e_{\pi}}{\operatorname{part-of}(e_{\alpha}, e_{\pi})} \\ \operatorname{part-of}(e_{\beta}, e_{\pi}) \\ (K_{\alpha} \sqcap K_{\beta})^{e_{\pi}} \end{cases}$$

- (14) a. Essun told the children to search for the cat.b. Binof searched the garden.Continuation b. Binof searched the garden.c. Tonkee looked in the kitchen.

-Result

 $\circ\;$ Continuation is the simplest topic relation.

$$Info'_{\text{Continuation}}(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = \begin{cases} \frac{e_{\pi}}{\operatorname{part-of}(e_{\alpha}, e_{\pi})} \\ \operatorname{part-of}(e_{\beta}, e_{\pi}) \\ (K_{\alpha} \sqcap K_{\beta})^{e_{\pi}} \end{cases}$$

- (14) a. Essun told the children to search for the cat.
 - b. Binof searched the garden.c. Tonkee looked in the kitchen.
 - c. Tonkee looked in the kitchen.

-Result

A closer look

(15) a. Essun told the children to search for the cat.

b. Binof searched the garden.

-Result

-Continuation c. Tonkee looked in the kitchen

searching for the cat

A closer look

(15) a. Essun told the children to search for the cat.

b. Binof searched the garden.c. Tonkee looked in the kitchen. Continuation -Result

searching for the cat

$$K_{b} = \begin{bmatrix} e_{b}, b, x, g \\ Binof(b) \\ searching(e_{b}) \\ actor(e_{b}, b) \\ object(e_{b}, x) \\ location(e_{b}, g) \\ garden(g) \end{bmatrix} K_{c} = \begin{bmatrix} e_{c}, t, x, k \\ Tonkee(t) \\ searching(e_{c}) \\ actor(e_{c}, t) \\ object(e_{b}, x) \\ location(e_{c}, k) \\ kitchen(k) \end{bmatrix} (K_{b} \sqcap K_{c})^{e} = \begin{bmatrix} e, x \\ searching(e) \\ object(e, x) \\ object(e, x) \end{bmatrix}$$

(I've already resolved the anaphor for the search-event object to the same x in K_b and K_c .)

- Narration is veridical and adds the information that events are temporally close and reported in order:
 - > "close" is sensitive to context (like "tall").
- \circ Let $e_1 \approx e_2$ mean that e_1 and e_2 are temporally close.

$$\mathit{Info}_{\mathsf{Narration}}^{\prime}(\pi,\mathcal{F}(\alpha),\mathcal{F}(\beta)) = \left(\begin{matrix} e_{\pi} \\ part-of(e_{\alpha},e_{\pi}) \\ part-of(e_{\beta},e_{\pi}) \\ (\mathcal{K}_{\alpha} \sqcap \mathcal{K}_{\beta})^{e_{\pi}} \\ post(e_{\alpha}) \approx \operatorname{pre}(e_{\beta})) \end{matrix}\right)$$

- Narration is veridical and adds the information that events are temporally close and reported in order:
 - > "close" is sensitive to context (like "tall").
- Let $e_1 \approx e_2$ mean that e_1 and e_2 are temporally close.

$$\mathit{Info}_{\mathsf{Narration}}'(\pi,\mathcal{F}(\alpha),\mathcal{F}(\beta)) = \begin{array}{c} \frac{e_{\pi}}{\operatorname{part-of}(e_{\alpha},e_{\pi})} \\ \operatorname{part-of}(e_{\beta},e_{\pi}) \\ (K_{\alpha} \sqcap K_{\beta})^{e_{\pi}} \\ \operatorname{post}(e_{\alpha}) \approx \operatorname{pre}(e_{\beta})) \end{array}$$

(16) a. The terrorist went to the bridge. b. Then he planted a bomb.

- Narration is veridical and adds the information that events are temporally close and reported in order:
 - > "close" is sensitive to context (like "tall").
- \circ Let $e_1 \approx e_2$ mean that e_1 and e_2 are temporally close.

$$\mathit{Info}_{\mathsf{Narration}}^{\prime}(\pi,\mathcal{F}(\alpha),\mathcal{F}(\beta)) = \begin{array}{c} \frac{e_{\pi}}{\operatorname{part-of}(e_{\alpha},e_{\pi})} \\ \operatorname{part-of}(e_{\beta},e_{\pi}) \\ (K_{\alpha}\sqcap K_{\beta})^{e_{\pi}} \\ \operatorname{post}(e_{\alpha}) \approx \operatorname{pre}(e_{\beta})) \end{array}$$

(16) a. The terrorist went to the bridge.
 b. Then he planted a bomb.
 on or near the bridge

- (18) a. It rained in Riga.??b. Then Arshak made dinner in Yerevan.
- (19) a. My car broke down. ??b. Then the sun set.

- (18) a. It rained in Riga. ??b. Then Arshak made dinner in Yerevan.
- (19) a. My car broke down. ??b. Then the sun set.
- (20) a. My car broke down.
 b. Then the sun set.
 c. I knew I was in trouble.

Explanation and Result

- Explanation is subordinating and Result is coordinating.
 - > Homework: verify this for yourself with examples involving anaphora.
 - > If you find a cool one, show it to us!
- Both are veridical.

Explanation and Result

- Explanation is subordinating and Result is coordinating.
 - > Homework: verify this for yourself with examples involving anaphora.
 - > If you find a cool one, show it to us!
- Both are veridical.

$$\mathit{Info}_{\mathsf{Explanation}}'(\pi,\mathcal{F}(\alpha),\mathcal{F}(\beta)) = \left| \begin{array}{c} e_{\pi} \\ \hline \mathsf{cause}(e_{\beta},e_{\alpha}) \\ \neg \mathtt{before}(e_{\alpha},e_{\beta}) \\ e_{\pi} = e_{\beta} + e_{\alpha} \end{array} \right|$$

Explanation and Result

- Explanation is subordinating and Result is coordinating.
 - > Homework: verify this for yourself with examples involving anaphora.
 - > If you find a cool one, show it to us!
- Both are veridical.

$$\mathit{Info}_{\mathsf{Explanation}}'(\pi,\mathcal{F}(\alpha),\mathcal{F}(\beta)) = \begin{bmatrix} e_{\pi} \\ \mathsf{cause}(e_{\beta},e_{\alpha}) \\ \neg \mathsf{before}(e_{\alpha},e_{\beta}) \\ e_{\pi} = e_{\beta} + e_{\alpha} \end{bmatrix}$$

$$\mathit{Info}_{\mathsf{Result}}'(\pi, \mathcal{F}(\alpha), \mathcal{F}(\beta)) = \begin{cases} \frac{e_{\pi}}{\mathsf{cause}(e_{\alpha}, e_{\beta})} \\ \neg \mathsf{before}(e_{\beta}, \\ e_{\pi} = e_{\alpha} + e_{\beta} \end{cases}$$

(21) a. (π_1) John walked (π_2) while it was raining. Background_{bckw} (π_1, π_2)

(21) a. (π₁) John walked (π₂) while it was raining. *Background*_{bckw}(π₁, π₂) b. (π₁) While it was raining, (π₂) John walked. *Background*_{fwd}(π₁, π₂)

- (21) a. (π_1) John walked (π_2) while it was raining. *Background*_{bckw} (π_1, π_2)
 - b. (π_1) While it was raining, (π_2) John walked. Background_{fwd} (π_1, π_2)
 - $\circ~$ These tell (arguably) the same story.
 - So we need two backgrounds:
 - > The main story PRECEDES the background (Background_{backward})
 - > The main story FOLLOWS the background (Background_{foward})
 - (Because we want the narrative structure to track the order of utterance; also see Asher, Prevot & Vieu (2007).)

- Both are veridical and subordinating.
 - > Is that right? The thing about subordination?
 - > Think about it. The cue-phrase is *while*.
- The following meaning postulate goes for both:

$$\mathit{Info}'_{\mathsf{Background}}(\pi,\mathcal{F}(lpha),\mathcal{F}(eta)) =$$

$$rac{m{e}_{\pi}}{ ext{overlap}(m{e}_{lpha},m{e}_{eta})}$$

- Both are veridical and subordinating.
 - > Is that right? The thing about subordination?
 - > Think about it. The cue-phrase is *while*.
- $\circ\;$ The following meaning postulate goes for both:

$$\mathit{Info}'_{\mathsf{Background}}(\pi,\mathcal{F}(lpha),\mathcal{F}(eta)) =$$

$$rac{m{e}_{\pi}}{ ext{overlap}(m{e}_{lpha},m{e}_{eta})}$$

• Easy enough, but...

(22)

- a. While it was just drizzling,
- b. a woman searched for shelter, [-Expl] -Background_{fwd}
- c. to not get wet.

(22)

Explanation

w doesn't get wet

To anaphorical intents and purposes *Background* CDUs are EDUs. This works as follows:

- To anaphorical intents and purposes *Background* CDUs are EDUs. This works as follows:
- whenever you have π : *Background*(π_1, π_2),

To anaphorical intents and purposes *Background* CDUs are EDUs. This works as follows:

- whenever you have π : *Background*(π_1, π_2),
- create a new segment λ : *K* where *K* is a DRS that "repeats" all referents veridically introduced in π_1, π_2 ,

To anaphorical intents and purposes *Background* CDUs are EDUs. This works as follows:

- whenever you have π : *Background*(π_1, π_2),
- create a new segment λ : *K* where *K* is a DRS that "repeats" all referents veridically introduced in π_1, π_2 ,
- and add ν : *Foreground-Background-Pair* (λ, π) . (henceforth, *FBP*)

We will put a full glossary of the SDRT coherence relations and their *Info*'s online.

- When we evaluate an entire SDRS $S = (\Pi, \mathcal{F}, L)$, we find its root label π_0 and compute $[\![\mathcal{F}(\pi_0)]\!]^S$.
 - > This is why the root label has to be unique: you need to know where to start.
- By design, this runs through the entire SDRS.
 - > This is why there cannot be any circles: this would never stop
- In some SDRSs we might hit the same label multiple times; this is harmless since this just repeats information we already know.

- Let $S = (\Pi, \mathcal{F}, L)$ be an SDRS, *w* be a world, *f*, *g* be variable assignments and *M* be a model.
- So you start with a set of possible worlds W and an assignment f,
 - > Typically ("null context"): *W* is all possible worlds, and *f* is empty
- And you compute which world-assignment pairs are not ruled out by the content of *P*:

 $\{(w,g) | f[P]_{M,w}^{S}g)\}$

(23) π_1 : John had a great lunch.

 π_2 : He ate soup π_3 : Then he ate pasta. -Elaboration

•

(23) π_1 : John had a great lunch. π_2 : He ate soup π_3 : Then he ate pasta.

 $\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$ $\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda)$ $\mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$

-Elaboration
(23) π_1 : John had a great lunch. -Elaboration Narration π_2 : He ate soup π_3 : Then he ate pasta. $\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$ $\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda)$ $\mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$ j, l, e_{π_1} $\mathcal{F}(\pi_1) = \mathcal{K}_1 = \begin{vmatrix} \text{John}(j) \\ \text{lunch}(l) \\ \text{eating}(e_{\pi_1}) \\ \text{great}(e_{\pi_1}) \\ \text{object}(e_{\pi_1}, l) \end{vmatrix}, \mathcal{F}(\pi_2) = \mathcal{K}_2 = \begin{vmatrix} s, e_{\pi_2} \\ \text{soup}(s) \\ \text{eating}(e_{\pi_2}) \\ \text{object}(e_{\pi_2}, s) \\ \text{actor}(e_{\pi_2}, j) \end{vmatrix}, \mathcal{F}(\pi_3) = \mathcal{K}_3 = \begin{vmatrix} \rho, e_{\pi_3} \\ \rho, e_{\pi_3} \\ \text{pasta}(\rho) \\ \text{eating}(e_{\pi_2}) \\ \text{object}(e_{\pi_2}, s) \\ \text{actor}(e_{\pi_2}, j) \end{vmatrix}$ lohn(i) s, e_{π_2} p, e_{π_2} $actor(e_{\pi_1}, j)$

(23) π_1 : John had a great lunch. -Elaboration Narration π_2 : He ate soup π_3 : Then he ate pasta. $\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$ $\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda)$ $\mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$ j, l, e_{π_1} $\mathcal{F}(\pi_1) = \mathcal{K}_1 = \begin{vmatrix} \text{John}(j) \\ \text{lunch}(l) \\ \text{eating}(e_{\pi_1}) \\ \text{great}(e_{\pi_1}) \\ \text{object}(e_{\pi_1}, l) \end{vmatrix}, \mathcal{F}(\pi_2) = \mathcal{K}_2 = \begin{vmatrix} s, e_{\pi_2} \\ \text{soup}(s) \\ \text{eating}(e_{\pi_2}) \\ \text{object}(e_{\pi_2}, s) \\ \text{actor}(e_{\pi_2}, j) \end{vmatrix}, \mathcal{F}(\pi_3) = \mathcal{K}_3 = \begin{vmatrix} \rho, e_{\pi_3} \\ \rho \\ \text{pasta}(\rho) \\ \text{eating}(e_{\pi_2}) \\ \text{object}(e_{\pi_2}, s) \\ \text{actor}(e_{\pi_2}, j) \end{vmatrix}$ lohn(i) s, e_{π_2} p, e_{π_2} $actor(e_{\pi_1}, j)$

 $\llbracket \mathcal{F}(\pi_0) \rrbracket^{\mathsf{S}} = \llbracket \textit{Elaboration}(\pi_1, \lambda) \rrbracket^{\mathsf{S}}$

(23) π_1 : John had a great lunch. -Elaboration Narration π_2 : He ate soup π_3 : Then he ate pasta. $\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$ $\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda)$ $\mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$ j, l, e_{π_1} $\mathcal{F}(\pi_1) = \mathcal{K}_1 = \begin{vmatrix} s, e_{\pi_2} \\ lunch(l) \\ eating(e_{\pi_1}) \\ great(e_{\pi_1}, l) \\ object(e_{\pi_1}, l) \\ actor(e_{\pi_2}, i) \end{vmatrix}, \mathcal{F}(\pi_2) = \mathcal{K}_2 = \begin{vmatrix} s, e_{\pi_2} \\ soup(s) \\ eating(e_{\pi_2}) \\ object(e_{\pi_2}, s) \\ actor(e_{\pi_2}, j) \end{vmatrix}, \mathcal{F}(\pi_3) = \mathcal{K}_3 = \begin{vmatrix} p, e_{\pi_3} \\ pasta(p) \\ eating(e_{\pi_2}) \\ object(e_{\pi_2}, s) \\ actor(e_{\pi_2}, i) \end{vmatrix}$ $actor(e_{\pi_1}, j)$

 $\llbracket \mathcal{F}(\pi_0) \rrbracket^{\mathsf{S}} = \llbracket \textit{Elaboration}(\pi_1, \lambda) \rrbracket^{\mathsf{S}} \\ = \llbracket \mathcal{F}(\pi_1) \land \mathcal{F}(\lambda) \land \textit{Info}_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}}$

(23) π_1 : John had a great lunch.

 π_2 : He ate soup

Narration π_3 : Then he ate pasta.

$$\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$$

$$\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$$

-Elaboration

$$\begin{split} & \llbracket \mathcal{F}(\pi_0) \rrbracket^{\mathsf{S}} = \llbracket \textit{Elaboration}(\pi_1, \lambda) \rrbracket^{\mathsf{S}} \\ & = \llbracket \mathcal{F}(\pi_1) \wedge \mathcal{F}(\lambda) \wedge \textit{Info}_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}} \\ & = \llbracket \mathcal{F}(\pi_1) \rrbracket^{\mathsf{S}} + \llbracket \mathcal{F}(\lambda) \rrbracket^{\mathsf{S}} + \llbracket \textit{Info}_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\mathsf{S}} \end{split}$$

(23) π_1 : John had a great lunch.

 π_2 : He ate soup

Narration π_3 : Then he ate pasta.

$$\Pi = \{\pi_0, \pi_1, \pi_2, \pi_3, \lambda\}, L = \pi_3.$$

$$\mathcal{F}(\pi_0) = Elaboration(\pi_1, \lambda) \quad \mathcal{F}(\lambda) = Narration(\pi_2, \pi_3)$$

$$\mathcal{F}(\pi_1) = \mathcal{K}_1 = \begin{bmatrix} j, l, e_{\pi_1} \\ John(j) \\ lunch(l) \\ eating(e_{\pi_1}) \\ great(e_{\pi_1}, l) \\ actor(e_{\pi_1}, j) \end{bmatrix}, \mathcal{F}(\pi_2) = \mathcal{K}_2 = \begin{bmatrix} \underbrace{s, e_{\pi_2}}{soup(s)} \\ eating(e_{\pi_2}) \\ object(e_{\pi_2}, s) \\ actor(e_{\pi_2}, j) \end{bmatrix}, \mathcal{F}(\pi_3) = \mathcal{K}_3 = \begin{bmatrix} p, e_{\pi_3} \\ pasta(p) \\ eating(e_{\pi_2}) \\ object(e_{\pi_2}, s) \\ actor(e_{\pi_2}, j) \end{bmatrix}$$

-Elaboration

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^{\mathsf{S}} = [\![\textit{Elaboration}(\pi_1, \lambda)]\!]^{\mathsf{S}} \\ & = [\![\mathcal{F}(\pi_1) \land \mathcal{F}(\lambda) \land \textit{Info}_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^{\mathsf{S}} \\ & = [\![\mathcal{F}(\pi_1)]\!]^{\mathsf{S}} + [\![\mathcal{F}(\lambda)]\!]^{\mathsf{S}} + [\![\textit{Info}_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^{\mathsf{S}} \\ & = [\![K_1]\!]^{\mathsf{S}} + [\![\textit{Narration}(\pi_2, \pi_3)]\!]^{\mathsf{S}} + [\![\textit{Info}_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^{\mathsf{S}} \end{split}$$

$\llbracket \mathcal{F}(\pi_0) \rrbracket^{\varsigma} = \llbracket K_1 \rrbracket^{\varsigma} + \llbracket \textit{Narration}(\pi_2, \pi_3) \rrbracket^{\varsigma} + \llbracket \textit{Info}'_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{\varsigma}$

$$\begin{split} & \llbracket \mathcal{F}(\pi_0) \rrbracket^{S} = \llbracket K_1 \rrbracket^{S} + \llbracket \textit{Narration}(\pi_2, \pi_3) \rrbracket^{S} + \llbracket \textit{Info}'_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{S} \\ & = \llbracket K_1 \rrbracket^{S} + \llbracket \mathcal{F}(\pi_2) \land \mathcal{F}(\pi_3) \land \textit{Info}'_{\textit{Narr}}(\lambda, \mathcal{F}(\pi_1), \mathcal{F}(\pi_2)) \rrbracket^{S} + \llbracket \textit{Info}'_{\textit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{S} \end{split}$$

$$\begin{split} & [\![\mathcal{F}(\pi_0)]\!]^{\mathsf{S}} = [\![\mathsf{K}_1]\!]^{\mathsf{S}} + [\![\mathsf{Narration}(\pi_2, \pi_3)]\!]^{\mathsf{S}} + [\![\mathsf{Info}'_{\mathit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^{\mathsf{S}} \\ & = [\![\mathsf{K}_1]\!]^{\mathsf{S}} + [\![\mathcal{F}(\pi_2) \land \mathcal{F}(\pi_3) \land \mathsf{Info}'_{\mathit{Narr}}(\lambda, \mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^{\mathsf{S}} + [\![\mathsf{Info}'_{\mathit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^{\mathsf{S}} \\ & = [\![\mathsf{K}_1]\!]^{\mathsf{S}} + [\![\mathcal{F}(\pi_2)]\!]^{\mathsf{S}} + [\![\mathcal{F}(\pi_2)]\!]^{\mathsf{S}} + [\![\mathsf{Info}'_{\mathit{Narr}}(\lambda, \mathcal{F}(\pi_1), \mathcal{F}(\pi_2))]\!]^{\mathsf{S}} + [\![\mathsf{Info}'_{\mathit{Elab}}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda))]\!]^{\mathsf{S}} \end{split}$$

$$\begin{split} & \left[\left[\mathcal{F}(\pi_{0})\right]^{S} = \left[\left[K_{1}\right]^{S} + \left[\left[Narration(\pi_{2},\pi_{3})\right]\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \\ & = \left[\left[K_{1}\right]^{S} + \left[\left[\mathcal{F}(\pi_{2}) \land \mathcal{F}(\pi_{3}) \land Info'_{Narr}(\lambda,\mathcal{F}(\pi_{1}),\mathcal{F}(\pi_{2}))\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \\ & = \left[\left[K_{1}\right]^{S} + \left[\left[\mathcal{F}(\pi_{2})\right]^{S} + \left[\left[\mathcal{F}(\pi_{3})\right]\right]^{S} + \left[\left[Info'_{Narr}(\lambda,\mathcal{F}(\pi_{1}),\mathcal{F}(\pi_{2}))\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \\ & = \left[\left[K_{1}\right]^{S} + \left[\left[K_{2}\right]^{S} + \left[\left[K_{3}\right]\right]^{S} + \left[\left[Info'_{Narr}(\lambda,\mathcal{F}(\pi_{1}),\mathcal{F}(\pi_{2}))\right]\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \end{split}$$

$$\begin{split} & \left[\left[\mathcal{F}(\pi_{0})\right]^{S} = \left[\left[K_{1}\right]^{S} + \left[\left[Narration(\pi_{2},\pi_{3})\right]\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \\ & = \left[\left[K_{1}\right]^{S} + \left[\left[\mathcal{F}(\pi_{2}) \land \mathcal{F}(\pi_{3}) \land Info'_{Narr}(\lambda,\mathcal{F}(\pi_{1}),\mathcal{F}(\pi_{2}))\right]\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \\ & = \left[\left[K_{1}\right]^{S} + \left[\left[\mathcal{F}(\pi_{2})\right]\right]^{S} + \left[\left[\mathcal{F}(\pi_{3})\right]\right]^{S} + \left[\left[Info'_{Narr}(\lambda,\mathcal{F}(\pi_{1}),\mathcal{F}(\pi_{2}))\right]\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \\ & = \left[\left[K_{1}\right]^{S} + \left[\left[K_{2}\right]^{S} + \left[\left[K_{3}\right]\right]^{S} + \left[\left[Info'_{Narr}(\lambda,\mathcal{F}(\pi_{1}),\mathcal{F}(\pi_{2}))\right]\right]^{S} + \left[\left[Info'_{Elab}(\pi_{0},\mathcal{F}(\pi_{1}),\mathcal{F}(\lambda))\right]\right]^{S} \end{split}$$

$$= \llbracket K_1 \rrbracket^{S} + \llbracket K_2 \rrbracket^{S} + \llbracket K_3 \rrbracket^{S} + \begin{bmatrix} e_{\lambda} \\ part-of(e_{\pi_2}, e_{\lambda}) \\ part-of(e_{\pi_3}, e_{\lambda}) \\ post(e_{\pi_2}) \approx pre(e_{\pi_3}) \\ (K_1 \sqcap K_2)^{e_{\lambda}} \end{bmatrix} + \llbracket Info'_{Elab}(\pi_0, \mathcal{F}(\pi_1), \mathcal{F}(\lambda)) \rrbracket^{S}$$

$$= \llbracket K_1 \rrbracket^{\varsigma} + \llbracket K_2 \rrbracket^{\varsigma} + \llbracket K_3 \rrbracket^{\varsigma} + \llbracket F(\lambda) > K_1 \land \neg (K_1 > F(\lambda)) \land \begin{bmatrix} e_{\pi_0} \\ part - of(e_{\pi_3}, e_{\lambda}) \\ post(e_{\pi_2}) \approx pre(e_{\pi_3}) \\ (K_1 \sqcap K_2)^{e_{\lambda}} \end{bmatrix}^{\varsigma}$$

$$= \llbracket K_{1} \rrbracket^{S} + \llbracket K_{2} \rrbracket^{S} + \llbracket K_{3} \rrbracket^{S} + \begin{bmatrix} \frac{e_{\lambda}}{part - of(e_{\pi_{2}}, e_{\lambda})} \\ part - of(e_{\pi_{3}}, e_{\lambda}) \\ post(e_{\pi_{2}}) \approx pre(e_{\pi_{3}}) \\ (K_{1} \sqcap K_{2})^{e_{\lambda}} \end{bmatrix}^{S} + \begin{bmatrix} \frac{e_{\lambda}}{part - of(e_{\pi_{2}}, e_{\lambda})} \\ part - of(e_{\pi_{2}}, e_{\lambda}) \\ part - of(e_{\pi_{3}}, e_{\lambda}) \\ post(e_{\pi_{2}}) \approx pre(e_{\pi_{3}}) \\ post(e_{\pi_{2}}) \approx pre(e_{\pi_{3}}) \\ post(e_{\pi_{2}}) \approx pre(e_{\pi_{3}}) \\ post(e_{\pi_{2}}) \approx pre(e_{\pi_{3}}) \\ (K_{1} \sqcap K_{2})^{e_{\lambda}} \end{bmatrix}^{S} + \boxed{\llbracket \mathcal{F}(\lambda) \rrbracket^{S} > K_{1}}^{P} + \boxed{\neg \boxed{K_{1} > \llbracket \mathcal{F}(\lambda) \rrbracket^{S}}}_{K_{1}} + \boxed{\neg \boxed{K_{1} > \llbracket \mathcal{F}(\lambda) \rrbracket^{S}}}_{e_{\pi_{0}} = e_{\lambda}} + \boxed{\neg \underbrace{e_{\pi_{0}}}_{part - of(e_{\lambda}, e_{\pi_{0}})} \\ e_{\pi_{0}} = e_{\lambda}} \end{bmatrix}$$

$$= \llbracket K_1 \rrbracket^{5} + \llbracket K_2 \rrbracket^{5} + \llbracket K_3 \rrbracket^{5} + \begin{bmatrix} \frac{e_{\lambda}}{part - of(e_{\pi_2}, e_{\lambda})} \\ part - of(e_{\pi_3}, e_{\lambda}) \\ post(e_{\pi_2}) \approx pre(e_{\pi_3}) \\ (K_1 \sqcap K_2)^{e_{\lambda}} \end{bmatrix} + \llbracket \mathcal{F}(\lambda) > K_1 \land \neg (K_1 > \mathcal{F}(\lambda)) \land \begin{bmatrix} \frac{e_{\pi_0}}{part - of(e_{\lambda}, e_{\pi_0})} \\ part - of(e_{\lambda}, e_{\pi_0}) \\ e_{\pi_0} = e_{\lambda} \end{bmatrix} \end{bmatrix}$$

$$= + \llbracket K_2 \rrbracket^{5} + \begin{bmatrix} \frac{e_{\lambda}}{part - of(e_{\pi_2}, e_{\lambda})} \\ part - of(e_{\pi_3}, e_{\lambda}) \\ post(e_{\pi_2}) \approx pre(e_{\pi_3}) \\ (K_1 \sqcap K_2)^{e_{\lambda}} \end{bmatrix} + \boxed{\llbracket \mathcal{F}(\lambda) \rrbracket^{5} > K_1} + \boxed{\neg \underbrace{K_1 > \llbracket \mathcal{F}(\lambda) \rrbracket^{5}}_{e_{\pi_0}} + \underbrace{\frac{e_{\pi_0}}{part - of(e_{\lambda}, e_{\pi_0})} \\ e_{\pi_0} = e_{\lambda} \end{bmatrix}$$

$$\underbrace{ \begin{vmatrix} j,l,e_{\pi_{1}} \\ John(j) \\ lunch(l) \\ eating(e_{\pi_{1}}) \\ great(e_{\pi_{1}},l) \\ actor(e_{\pi_{1}},j) \end{vmatrix} + \underbrace{ \begin{bmatrix} s,e_{\pi_{2}} \\ soup(s) \\ eating(e_{\pi_{2}}) \\ object(e_{\pi_{2}},s) \\ actor(e_{\pi_{2}},j) \\ eating(e_{\pi_{2}}) \\ fotomore line (e_{\pi_{2}},s) \\ actor(e_{\pi_{2}},j) \\ end the eating(e_{\pi_{2}}) \\ fotomore line (e_{\pi_{2}},s) \\ fotomo$$

$$(K_1 \sqcap K_2)^{e_\lambda} = egin{array}{c} e_\lambda \ eating(e_\lambda) \ actor(e_\lambda,j) \end{array}$$

$$\frac{j, l, e_{\pi_1}}{\text{John}(j)}$$
lunch(l)
eating(e_{π_1})
great(e_{π_1})
object(e_{π_1}, l)
actor(e_{π_1}, j)

$$\begin{array}{c} \overline{s, e_{\pi_2}, \rho, e_{\pi_3}, e_{\lambda}} \\ \overline{soup(s)} \\ eating(e_{\pi_2}) \\ object(e_{\pi_2}, s) \\ actor(e_{\pi_2}, j) \\ pasta(\rho) \\ eating(e_{\pi_2}) \\ object(e_{\pi_2}, s) \\ actor(e_{\pi_2}, j) \\ part-of(e_{\pi_2}, e_{\lambda}) \\ part-of(e_{\pi_3}, e_{\lambda}) \\ post(e_{\pi_2}) \approx pre(e_{\pi_3}) \\ eating(e_{\lambda}) \\ actor(e_{\lambda}, j) \end{array}$$

$$+ \begin{array}{|c|c|c|c|}\hline \hline e_{\pi_0} \\ \hline \llbracket \mathcal{F}(\lambda) \rrbracket^S > \mathcal{K}_1 \\ \neg \hline \hline \hline \mathcal{K}_1 > \llbracket \mathcal{F}(\lambda) \rrbracket^S \\ \texttt{part-of}(e_{\lambda}, e_{\pi_0}) \\ e_{\pi_0} = e_{\lambda} \end{array}$$

$$\begin{array}{c} \underbrace{j,l,e_{\pi_1}} \\ john(j) \\ \texttt{lunch}(l) \\ \texttt{eating}(e_{\pi_1}) \\ \texttt{great}(e_{\pi_1}) \\ \texttt{object}(e_{\pi_1},l) \\ \texttt{actor}(e_{\pi_1},j) \end{array}$$

+

(24)

- π_1 : John had a great lunch .
- π_2 : He ate soup.
- π_3 : Then he ate pasta.