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Abstract

Inferential expressivism makes a systematic distinction between inferences that are valid
qua preserving commitment and inferences that are valid qua preserving evidence. I argue
that the characteristic inferences licensed by the principle of comprehension, from x is P
to x is in the extension of P and vice versa, fail to preserve evidence, but do preserve
commitment. Taking this observation into account allows one to phrase inference rules
for unrestricted comprehension without running into Russell’s paradox. In the resulting
logic, one can derive full second-order arithmetic. Thus, it is possible to derive classical
arithmetic in a consistent logic with unrestricted comprehension.
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1 Introduction
Naı̈ve comprehension entails that for each formula there is its extension, containing all and
only the things that satisfy the formula. There is obvious utility in being able to talk, in toto,
about all the things that satisfy a formula, and in treating this totality as a singular object that
can satisfy further formulas. It allows mathematicians to, for instance, speak of the totality of
solutions to an equation and examine the properties of this totality. It allows the folk to speak
of the properties of collections, as when one says that a museum’s collection of artworks is
remarkable.1 Frege, albeit with hesitation, once laid down principles entailing comprehension
to found arithmetic. Surely, comprehension ought not to be jettisoned lightly.

But there is nothing light about how naı̈ve comprehension was jettisoned. It entails Rus-
sell’s paradox. The standard diagnosis is that the self-referentiality allowed by naı̈ve compre-
hension bears the blame, leading to the development of axiomatic set theory. Alternatively,
one may revise the background logic to prevent (Weir, 1998; Field, 2008; Ripley, 2015) or tol-
erate the paradox (Restall, 1992; Weber, 2010). Neither approach gives much succor to Frege’s
(1884; 1893) foundational project. Frege’s concerns put set-theoretic axioms equally on trial as
they do number-theoretic axioms. And the known alternative background logics are too weak
to derive classical arithmetic.2 Neo-Fregeans, for their part, have given up on (unrestricted)
comprehension (Hale and Wright, 2001).

1Plural logic is the attempt to regain these benefits without treating totalities as singular (Boolos, 1984; Oliver
and Smiley, 2013). I set this to the side.

2Weber (2010), for instance, derives all axioms of arithmetic, but not all classical theorems of arithmetic.
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My contribution here is twofold. First, a technical result: the (to my knowledge) first con-
sistent calculus in which (i) all inferences between x isP and x is in the extension ofP are valid,
and (ii) all theorems of second-order Peano Arithmetic are provable. Second, a new diagnosis
of Russell’s paradox: the paradox is engendered by treating the principle of comprehension as
preserving evidence whereas it only preserves commitment. The distinction between preser-
vation of commitment and of evidence is an affordance of inferential expressivism (Incurvati
and Schlöder, 2022, 2023b). The diagnosis motivates the calculus, but the calculus is interesting
by itself and may also be motivated differently.

I begin with an exposition of inferential expressivism and the inferential expressivist di-
agnosis of the Liar paradox (Incurvati and Schlöder, 2023a). Using it as a blueprint, I present
my diagnosis of Russell’s paradox in Section 3 and go on to derive arithmetic in Section 4. I
conclude in Section 5 by discussing where this leaves Frege’s foundational project.

2 Inferential Expressivism
Traditional inferentialists claim that the meanings of (some) linguistic items are determined
by which inferences a sentence containing the item can feature in (Gentzen, 1935; Prawitz,
1965; Dummett, 1991). For instance, inferentialists consider the standard natural deduction
rules for conjunction as determining the meaning of conjunction.

Incurvati and Schlöder (2022), taking up observations going back to Frege (1879, 1919),
Dummett (1973), and Rumfitt (2000), note that these rules are only valid if logic is assertoric.
If logic is, for instance, rejective, they are invalid, as from rejecting A and B it does not follow
that one rejects A. Thus, the received rules for conjunction are properly stated as follows.

• Asserting A and asserting B entails asserting A and B.

• Asserting A and B entails asserting A and asserting B.

But what is it to infer an assertion? Taking cues from expressivism, Incurvati and Schlöder
claim that to assert a sentence is to express a belief and thereby to undertake a commitment
to expressing this belief.3 Such commitment to attitude expressions is what is preserved in
inference. So, the conjunction rules state that someone who is committed to expressing belief
towardsA and towards B is also committed to expressing belief towardsA and B, and vice versa.
Commitments towards attitude expressions, in turn, are characterized as follows. Someone is
committed to expressing an attitude if: when the issue is raised, they are conversationally
obliged to express the attitude or retract an earlier commitment.4

Thereby, Incurvati and Schlöder (2022, 2023b) arrive at inferential expressivism, the view
that meanings are determined by inferential relations between attitude expressions. The con-
junction rules are then as follows, writing +A for the expression of belief towards A.

(+ ∧ I.)+A +B

+A ∧B
(+ ∧ E.1)

+A ∧B
+A

(+ ∧ E.2)
+A ∧B
+B

It is straightforward to include attitudes other than belief. For instance, bilateralists claim
that meanings are determined by conditions on both assertion and rejection (Smiley, 1996).

3This differs from Brandom’s (1994) claim that asserting is undertaking commitments towards sentences. Here
it is commitments towards attitude expressions towards sentences.

4It is commitment towards attitude expressions that is preserved rather than attitudes outright, as otherwise
there is a clutter problem (Harman, 1986). It would be absurd to say that someone who expressed a belief is also
expressing all beliefs that follow from it, as these may be arbitrarily many (Restall, 2005).
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Inferential expressivists give the bilateral meaning of negation by the negation rules, writing
−A for the expression of disbelief towards A.

(+¬I.) −A
+¬A

(+¬E.)+¬A
−A

(−¬I.) +A

−¬A
(−¬E.)−¬A

+A

That is, (+¬I.) states that if one rejects A, one is committed to expressing belief towards the
negation ofA, so once this commitment is pointed out, one must actually express this belief or
retract one’s earlier rejection. The other rules are understood similarly. The bilateralist is not
done, however. Expressions of belief and disbelief must coordinate as contraries, so bilateralists
lay down the Smileian reductio rules.5

(Rejection)+A − A

⊥
(SR1)

[+A]
...
⊥
−A

(SR2)

[−A]
...
⊥
+A

If negation is defined by the negation rules and expressions of belief and disbelief are coordi-
nated by Smileian reductio, then classical reductio and double negation elimination are valid
in the logic under + (Rumfitt, 2000).

Now, preserving commitments towards attitude expressions differs from the more famil-
iar conception of inference as preserving evidence. Prawitz (2015) holds that “the aim of . . .
inferences is to make assertions justified” (p. 71, his emphasis) and hence an “inference is . . .
legitimate, if a subject who makes the inference and has evidence for its premisses thereby
gets evidence for the conclusion” (p. 73). Similar claims have been made, notably, by Dum-
mett (1978, 1991) and in recent discussions of epistemic modals (e.g. Schulz 2010) . Incurvati
and Schlöder consider the evidence-preserving inferences to be a subset of the commitment-
preserving ones. Following Prawitz, they claim that an inference preserves evidence if the
inference can be used to justify expressing the attitude in its conclusion.6

However, Dickie (2010) argued that bilateralists cannot claim that inference preserves evi-
dence, as rejections are evidentially unspecific. For instance, one may justify rejecting Homer
wrote the Iliad with evidence for Homer did not write the Iliad but also with evidence for Homer
did not exist. If the rejection is justified by evidence for Homer did not exist, Dickie points out,
one cannot use this rejection to justify asserting Homer did not write the Iliad.7 So the negation
rules do not preserve evidence. Bilateralists might respond that the sign − only denotes strong
rejections, i.e. rejections justifiable by evidence that also justifies the corresponding negative
assertion. This saves the negation rules, but renders Smileian reductio invalid, since infer-
ences towards absurdity are also unspecific. Expressing belief towards Homer wrote the Iliad
is absurd when one also expressed belief towards Homer did not exist. Smileian reductio hence

5The sign ⊥ here stands for the act of announcing Contradiction! (Incurvati and Schlöder, 2023b, p230). This is
a contentless speech act, to be distinguished from performing an assertion with contradictory content. One may
assert a contradictory content without without realizing that this content is in fact contradictory. The function
of announcing Contradiction! is to register an inconsistency; to be committed to ⊥ is to be obliged to retract an
earlier commitment. Also see Tennant 1999 for the related use of ⊥ as a punctuation mark.

6Incurvati and Schlöder (2023a) stress that this is compatible with many conceptions of evidence, e.g. iden-
tifying evidence with rational credence (Schulz, 2010), or with knowledge (Williamson, 2000), but not with any
conception. For instance, it rules out anti-luminosity (whereby the mere existence of an inference means one has
evidence) as one cannot use evidence for justification if one does not know one has it.

7One might think that conceiving of negation as external negation or as metalinguistic negation helps, but
neither ultimately meets Dickie’s challenge (Schlöder, 2022).
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entails that expressing belief towards Homer did not exist entails the rejection of Homer wrote
the Iliad. If rejection is strong, this is mistaken.

Bilateralists can meet this challenge by becoming multilateralists. Reserving the sign −
for strong rejection (expressing disbelief), Incurvati and Schlöder (2022) add a third sign ⊖
for rejection tout court, expressing that one refrains from believing. Then the negation rules,
phrased with the sign − for strong rejection, remain valid as they preserve both commitment
and evidence. And the Smileian reductio rules can be rephrased as follows to also preserve
commitment and evidence.

(Rejection)+A ⊖ A

⊥
(SR1)

[+A]
...
⊥
⊖A

(SR2)

[⊖A]
...
⊥
+A

However, Smileian reductio was needed to ensure that + and − are contraries, which is not
achieved by this version. Incurvati and Schlöder (2023a) suggest to recover valid versions of
Smileian reductio for + and − by repeating the strategy used to recover valid versions of the
negation rules. While the negation rules for rejections tout court are invalid, one can isolate a
class of rejections, the strong ones, for which they are valid. Now, while the Smileian reductio
rules for + and − are invalid for derivations of absurdity tout court, one can isolate a class of
such derivations for which they are valid. This, Incurvati and Schlöder (2023a) argue, is just
the class of evidence-preserving inferences, so they lay down the following Smileian reductio*
rules.

(Rejection∗)
+A − A

⊥
(SR∗

1)

[+A]
...
⊥
−A

if the inference to ⊥
preserves evidence (SR∗

2)

[−A]
...
⊥
+A

if the inference to ⊥
preserves evidence

Dickie’s counterexamples are now ineffective. Inferring absurdity from Homer did not exist
and Homer wrote the Iliad does not preserve evidence, since Homer existing is a precondition
for there being evidence for him having written the Iliad. Thus if Homer did not exist is a
premiss, Homer wrote the Iliad cannot occur in an evidence-preserving inference at all. It
remains correct to infer absurdity from Homer did not exist and the assumption Homer wrote
the Iliad. This inference preserves commitment and can properly feature in Smileian reductio.
But it does not preserve evidence, so is excluded from Smileian reductio* and one cannot infer
the strong rejection of Homer wrote the Iliad on its basis.

Which inferences preserve evidence depends on the expressiveness of one’s language. In
the comparatively impoverished language of propositional logic, an inference can only fail to
preserve evidence if it uses a premiss signed with ⊖. Thus, Incurvati and Schlöder (2023a)
specify the following for propositional multilateral logic.

(SR∗
1)

[+A]
...
⊥
−A

if no premisses signed with ⊖
were used to derive ⊥ (SR∗

2)

[−A]
...
⊥
+A

if no premisses signed with ⊖
were used to derive ⊥

The result is basic multilateral logic (BML). The sentences of BML are formed in the usual way
from a countable set of propositional atoms, conjunction, and negation. A formula of BML is
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⊥ or a sentence of BML prefixed with one of +, − and ⊖. The calculus of BML is the natural
deduction calculus over the negation rules (for −), the conjunction rules, Smileian reductio
(for +/⊖) and Smileian reductio* (for +/−).

Incurvati and Schlöder (2023a) then lay down the following truth rules as determining the
meaning of the truth predicate T , capturing its use as a device for expressing endorsement
(Horwich, 1998) and opposition (Scharp, 2013).

(+T-IN)
+A

+T ⌜A⌝
(+T-OUT)+T ⌜A⌝

+A
(−T-IN)

−A
−T ⌜A⌝

(−T-OUT)−T ⌜A⌝
−A

If one adds these rules (adjusting the language accordingly) to BML, paradox immediately
follows. Following the usual presentation of the Liar paradox, consider a sentence L such
that ⊢ +L ↔ ¬T ⌜L⌝ and demonstrate that +L ⊢ +¬L and +¬L ⊢ +L. If either of these
inferences preserves evidence, one can apply Smileian reductio* to derive the premiss of the
other, and thus derive a contradiction.

But if either inference preserves evidence and it is possible at all to have evidence for L or
¬L, then the same evidence can justify both L and ¬L. One may say that it is fine for the same
evidence to justify both a sentence and its negation, which is a version of the paraconsistent
diagnosis (Priest, 1979). Or that it is not possible to have evidence for L or ¬L at all, which is
a version of the paracomplete diagnosis (Field, 2008). Incurvati and Schlöder (2023a) suggest
a third option: that the truth rules do not preserve evidence, but are nonetheless valid qua
preserving commitment. They contend that their diagnosis is on a par with the paracomplete
or paraconsistent ones, as each is equally motivated by the Liar.

Incurvati and Schlöder (2023b, ch. 7) adduce another argument to support their diagnosis.8
It begins with a tale told by Shapiro (2003). He imagines a disciple attending to a guru while
a logician observes. The faithful disciple endorses everything asserted by the guru. The guru
and the logician speak both the languages of arithmetic and set theory, but the disciple only
speaks the language of arithmetic and is unable to understand the language of set theory. The
guru already uttered some standard bridging principles between arithmetic and set theory
and, thus, the disciple endorsed them. Now, the guru asserts a set-theoretic sentence A with
no translation in the language of arithmetic. Despite not understandingA, the faithful disciple
asserts ⌜A⌝ is true. The logician informs the disciple that ⌜A⌝ entails an arithmetical sentence
⌜B⌝, given the bridge principles. The disciple, taking this as competent testimony, expresses
belief towards B.

Thus, one can intelligibly predicate truth of sentences one does not, and perhaps cannot,
understand, mean something by it (i.e. express something one understands) and be tied to
the consequences of this predication. Mundane examples of this abound, as when one says
Everything Aristotle said is true without understanding Ancient Greek. The truth rules must
hence apply to all sentences whatsoever. But then they cannot preserve evidence. A speaker
who does not understand a sentence A may nevertheless understand ⌜A⌝ is true and can be
justified in asserting ⌜A⌝ is true. But they cannot be justified in asserting A, since they do
not understand A and hence cannot understand what would constitute evidence for A. It
follows that the inference from ⌜A⌝ is true to A fails to preserve evidence. Since a single
counterexample suffices to show that an inference rule does not preserve some property, the
truth rules do not preserve evidence. However, one is bound by the consequences of one’s
truth predications, as highlighted by the role of the logician in Shapiro’s tale. Thus, the truth
rules preserve commitment.

8Incurvati and Schlöder (2023a) give yet another argument, but it is not relevant for what is to follow.
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The argument rests on Incurvati and Schlöder’s inferentialism: that to understand a sen-
tence is to grasp its inferential role and that evidence is obtained by inference. Without
grasping the inferential role of a sentence, one cannot apprehend inferences that conclude
the sentence. Thus, one cannot have evidence for sentences one does not understand. These
inferentialist claims are technical and might not entirely match folk uses of the term evidence
(e.g. some might say that the guru’s assertion is evidence for A regardless of whether A is
understood).

Incurvati and Schlöder (2023a) conclude that the truth rules must be excluded from Smileian
reductio*. They demonstrate that, when this is done, the truth rules are consistent with BML.

3 Comprehension
Incurvati and Schlöder’s diagnosis of the Liar can serve as a blueprint for diagnosing Russell’s
paradox. To begin, the following conversion rules define the meaning of λ-terms in a second-
order logic.

(+λI.) +A[x/v]
+[λv.A]x

(+λE.)+[λv.A]x

+A[x/v]
(−λI.) −A[x/v]

−[λv.A]x
(−λE.)−[λv.A]x

−A[x/v]

Comprehension can be expressed as the following inferences: for all objects x and concepts
P , x is a member of its extension ϵP if and only if x is P . This corresponds to the following
extension rules.9

(+ϵI.) +Px

+x ∈ ϵP
(+ϵE.)+x ∈ ϵP

+Px
(−ϵI.) −Px

−x ∈ ϵP
(−ϵE.)−x ∈ ϵP

−Px

Extending BML with the conversion rules and the extension rules, without further changes,
leads to Russell’s paradox. Let R abbreviate [λv.¬v ∈ v]. Then +ϵR ∈ ϵR ⊢ +¬ϵR ∈ ϵR and
+¬ϵR ∈ ϵR ⊢ +ϵR ∈ ϵR, as witnessed by the following derivations.

+ϵR ∈ ϵR ⊢(+ϵE.) +[λv.¬v ∈ v](ϵR) ⊢(+λE.) +¬ϵR ∈ ϵR

+¬ϵR ∈ ϵR ⊢(+λI.) +[λv.¬v ∈ v](ϵR) ⊢(+ϵI.) +ϵR ∈ ϵR

If either of these inferences preserves evidence, Smileian reductio* entails the premiss of the
other, which then entails a contradiction. And if, additionally, it is at all possible to have evi-
dence for either premiss, then the same evidence can justify both a sentence and its negation.
This suggests the usual diagnoses. Paracompletists might claim that it is not possible to have
evidence for ϵR ∈ ϵR or ¬ϵR ∈ ϵR, whereas paraconsistentists might find it tolerable to have
the same evidence supporting both sentences. My diagnosis is that the extension rules fail to
preserve evidence. This is on a par with the paracomplete and paraconsistent diagnoses, but
Shapiro’s tale again yields an independent argument.

Consider a guru who makes pronouncements like x is P and a disciple who responds with
x is in ϵP . The disciple can do this without understanding P . Perhaps the guru believes that
2ω = ℵ2 and asserts that 0 and 1 are the indices of ℵ-numbers below the continuum. The

9Technically, as relations also have extensions (‘courses-of-values’), x abbreviates a sequence of n terms, n
being the arity of P .
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disciple cannot understand the alephs, but understands 0 and 1 and assents to the claim that
they are in the extension of whatever property the guru talked about. This commits him to
whatever arithmetical facts are entailed by 2ω = ℵ2. Thus, one can intelligibly utter sentences
that contain, in transparent contexts, references to the extension of a concept that one does
not understand, mean something by it (i.e. express something that one understands) and be
tied to what follows from such utterances.

Again, mundane examples abound. Few know that Platonic solid means convex, regular
polyhedron in 3D space, but some may nonetheless know that the cube is in the extension of
Platonic solid. Someone in this epistemic situation can assert that the cube is in the extension
of Platonic solid, mean something by it, and be thereby committed to the consequences of this
claim. But, not understanding the concept, they do not grasp what would be evidence for The
cube is a Platonic solid – they do not grasp that to justify this claim they must justify The cube is
regular and convex. However, if they assert The cube is in the extension of Platonic solid, they are
committed to The cube is convex, since they must assent to this (or retract) when it is pointed
out to them that this is a consequence of their assertion.

These observations support an argument for the extension rules failing to preserve ev-
idence. To stress, it relies on Incurvati and Schlöder’s inferentialism: that to understand a
sentence is to grasp its inferential role and that one cannot have evidence without grasping
inferential role. As said, these claims might deviate from folk use of evidence. Moreover, the
difference between extension-talk and concept-talk is often obscured. Someone who does not
understand the concept Platonic solid, but believes that the cube is in its extension, might well
assert The cube is a Platonic solid.

This is an imprecision of natural language. Perhaps all that someone knows about Platonic
solids is that the list tetrahedron, cube, octahedron, dodecahedron, icosahedron exhausts them, so
they use Platonic solid as a shorthand for this list. But there is an important difference between
using a predicate as a shorthand for an extension (when one’s understanding of Platonic solid is
a list of five polyhedra) and as expressing an intension (when one’s understanding of Platonic
solid is convex, regular polyhedron in 3D space), despite either use giving rise to utterances like
The cube is a Platonic solid. The distinction matters since there is a difference in inferential role.
The claim The cube is a Platonic solid, understood intensionally, can be used in an inference
to justify The cube is convex. But this is not so when it is understood extensionally, as then it
is a claim about the cube being one of five polyhedra, from which nothing about convexity
follows.10

Generally, having evidence for an object falling under a concept allows one to obtain, by
inference, evidence for the object having the properties that make up the concept. Thus, if
moving from extension to intension preserved evidence, then having evidence for an object
belonging to a list (the extensional use) would allow one to obtain, by inference, evidence for
it falling under a concept (the intensional use) and, thereby, obtain evidence for it having the
properties that make up the concept. But this is not the case. Evidence for an object belonging
to a list does not allow one to justify it having such properties, if one does not understand the

10This echoes Frege’s (1892b) discussion of sense and reference. My distinction is between using Platonic solid
with its sense regular, convex polyhedron and using it to directly name this sense’s reference. Frege rejects direct
naming, so might say that the latter use is also expressing a sense, namely one of: tetrahedron, cube, octahedron,
dodecahedron, icosahedron. The argument proceeds the same either way.

Even in technical contexts, such imprecisions occur, e.g. when two mathematicians use ordinal to express
different but equivalent definitions. Strictly speaking, moving from a claim about ordinals in one sense to a claim
about ordinals in another sense is not evidence-preserving. This is ignored in practice, as the material equivalence
of the senses is an understood theorem. Moving from one sense to the other then goes by modus ponens and the
theorem, which does preserve evidence.
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concept that gives rise to the list. As observed above, it is possible to have evidence for an
object belonging to a list (e.g. from testimony) without understanding the concept that gives
rise to the list. Nonetheless, such inferential moves preserve commitment, as someone who
makes the extensional claim can be held to the consequences of the intensional claim, once
pointed out.

In the formal language one makes the distinction sharp, reserving predication for the in-
tensional use and membership/extension talk for the extensional use. But then the extension
rules fail to preserve evidence. So, when extending BML with the conversion rules and the
extension rules, we must exclude the latter from Smileian reductio*.

(SR∗
1)

[+A]
...
⊥
−A

if the inference to ⊥ uses no premisses
signed with ⊖ and no extension rules

(SR∗
2)

[−A]
...
⊥
+A

if the inference to ⊥ uses no premisses
signed with ⊖ and no extension rules

Russell’s paradox is then treated as follows. The derivations of ⊥ from +ϵR ∈ ϵR and from
+¬ϵR ∈ ϵR are valid, but not evidence-preserving. Thus they cannot occur under Smileian
reductio*. But by Smileian reductio it follows that ⊢ ⊖ϵR ∈ ϵR and ⊢ ⊖¬ϵR ∈ ϵR. The claims
that the extension of R is a member of itself and that it is not a member of itself are both to
be rejected. Likewise for the claims that R(ϵR) and ¬R(ϵR).

However, there is a principled reason to reclaim some inferences as evidence-preserving.
Consider two concepts P and Q and the complex λ-expression [λv.Pv ∧ Qv]. To show that
x ∈ ϵ[λv.Pv ∧ Qv] entails x ∈ ϵP requires the extension rules and hence does not preserve
evidence. However, all that is required for evidence being preserved here is that conjunction
is understood, not that P or Q is understood. Shapiro’s guru might assert something about
the conjunction of two set-theoretic concepts and, despite not understanding these concepts,
the disciple can understand that the guru has asserted something about a conjunction and
hence apprehend that if something is a member of the extension of the conjunctive concept,
it is in the extension of either conjunct. So, in general, relations between concepts that can
be grasped without understanding the concepts themselves, translate to the same relations
between their extensions. Formally, this is expressed in the following meta-rule, where ⊢∗

denotes evidence-preserving inference.11

(Absoluteness) +P1x1, ...,+Pnxn ⊢∗ +Qy

+x1 ∈ ϵP1, ...,+xn ∈ ϵPn ⊢∗ +y ∈ ϵQ

So if there is a derivation +P1x1, ...,+Pnxn ⊢∗ +Qy (with no further premisses), there is a
derivation +x1 ∈ ϵP1, ...,+xn ∈ ϵPn ⊢∗ +y ∈ ϵQ. This is compatible with the guru/disciple
argument because the argument showed that failures of evidence-preservation occur when
one moves from extensional claims to intensional claims. But Absoluteness only adds infer-
ences between extensional claims. Likewise, Absoluteness is compatible with the diagnosis of
Russell’s paradox, as the paradox essentially involves moves between extension and intension.

11Incurvati and Schlöder (2023a) discuss a similar rule for the truth predicate, but appear to consider it to be
of mostly technical interest.
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Now, the calculus BMLϵ is defined as follows. Its language contains countably many first-
order variables x0, x1, ... and second-order variables P0, P1, ... (with arities ni), identity =,
conjunction ∧, negation ¬, first- and second-order universal quantifier ∀, 2-ary relation ∈,
term-forming operator ϵ, and concept-forming operator λ. Then define by simultaneous re-
cursion:12

• A term is a first-order variable or ϵP where P is a predicate.

• A predicate of arity n is a second-order variable of arity n or [λx1...xn.A] where A is a
sentence and the xi are distinct first-order variables.

• An atom is one of t1...tn ∈ t, t1 = t2, or Pt1...tn where t and the ti are terms and P is
an n-ary predicate.

• Sentences are defined in the usual way from atoms and ¬, ∧ and ∀.

Then, the following are the obvious quantifier rules, where t in (∀E.) ranges over arbitrary
terms, and Q in (∀2E.) ranges over arbitrary predicates.

(+∀I.)+A[y/x]
+∀x(A)

if y does not occur free in premisses
or undischarged assumptions (+∀E.) +∀x(A)

+A[y/x]

(+∀2I.)+A[Q/P ]
+∀P (A)

if Q does not occur free in premisses
or undischarged assumptions (+∀2E.) +∀P (A)

+A[Q/P ]

The identity rules are as follows (cf. Read, 2004; Schlöder, 2023).

(+ = I.P )

[+Px]
...

+Py

+x = y

where P does not occur in
premisses or assumptions (+ = E.P )+Px + x = y

+Py

(+ = I.ϵP )

[+x ∈ ϵP ]
...

+y ∈ ϵP

+x = y

where P does not occur in
premisses or assumptions (+ = E.ϵP )+x ∈ ϵP + x = y

+y ∈ ϵP

That is, two objects are identical if and only if they fall under all the same concepts or are in
all the same extensions.

Let the calculus of BMLϵ be the calculus of BML (with Smileian reductio* amended to
exclude the extension rules), extended with Absoluteness, conversion rules, extension rules,
quantifier rules, and identity rules. Hereon, ⊢ is the calculus of BMLϵ. In the Appendix, I state
a model theory for which it is sound.

Going forward, it will be useful to let A → B abbreviate ¬(A ∧ ¬B), A ∨ B abbreviate
¬(¬A∧¬B) and ∃x(A) abbreviate¬∀x(¬A). For the conditional, one can derivemodus ponens
and, importantly, a restricted version of Conditional Proof (Incurvati and Schlöder, 2022).

12Someone worried about circularity or impredicativity here may find a stratified definition of such a language
in Field et al. 2017, p454.
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(+ → I.)

[+A]
...

+B

+x = y

if the inference to ⊥ uses no premisses
signed with ⊖ and no extension rules (+ → E.)+A→ B + A

+B

4 Arithmetic
Zermelo (1908) defined the numbers by iteratively forming singletons, i.e. 0 is the empty set, 1
is {0}, 2 is {{0}}, etc. This requires very little set theory and is hence the most straightforward
approach here.13 So let Sx abbreviate [λv.v = x], and define sx = ϵSx and 0 = ϵ[λv.v ̸= v].

A concept P is inductive if 0 falls under P and falling-under-P is closed under successor.
Let Ω be the concept falls under all inductive concepts.

Ω = [λv.∀P ((P0 ∧ ∀y(Py → Psy)) → Pv)]

Trivially, Ω is inductive and Ω0, Ωs0, etc. By the extension rules, ω = ϵΩ exists and contains
0, s0, etc.14 Define the concept number to be Ω and turn to the laws of arithmetic.

Theorem 4.1 (Induction). ⊢ +∀P ((P0 ∧ ∀y(Py → Psy)) → ∀x(Ωx→ Px))

Proof. The derivation below shows +P0 ∧ ∀y(Py → Psy),+Ωx ⊢ +Px.

+Ωx
+∀P ((P0 ∧ ∀y(Py → Psy)) → Px)

(+∀2E.)
+P0 ∧ ∀y(Py → Psy)) → Px +P0 ∧ ∀y(Py → Psy)

(+ →E.)
+Px

Everything in this derivation preserves evidence, so the theorem follows by (+ →I.) and
(+∀I.).

Next, derive the minimal structure of the number series: 0 is not a successor, successors
are unique, and each number is either 0 or the successor of a number.

Theorem 4.2 (Robinson Axioms). The following are theorems of BMLϵ.

R1 ∀x(Ωx→ sx ̸= 0).

R2 ∀x∀y((Ωx ∧ Ωy) → (sx = sy ↔ x = y)).

R3 ∀x(Ωx→ (x = 0 ∨ ∃y(Ω(y) ∧ x = sy))).

Proof of R3. Let P = [λv.v = 0 ∨ ∃y(Ωy ∧ v = sy)]. By Induction, it suffices to show that
+P0 and +∀n(Pn → Psn). The base case, +P0, is trivial. So let n be arbitrary and suppose
for the induction hypothesis that +Pn, i.e. +n = 0 ∨ ∃y(Ωy ∧ n = sy). It is to show that
+sn = 0 ∨ ∃y(Ωy ∧ sn = sy).

Because Ω is inductive, +Ω0 and if +Ωy, then +Ωsy. So the induction hypothesis entails
+Ωn. Then, trivially, +Ωn∧ sn = sn. By existential generalization, +∃y(Ωy∧ sn = sy). This
concludes the induction.
The proofs of R1 and R2 require more finesse. Begin with two lemmas.

13Von Neumann ordinals are superior to Zermelo’s in that they extend to the transfinite and permit an easy
definition of cardinality. But Zermelo ordinals suffice for arithmetic and are easier to handle.

14This allows one to identify the numbers, meeting Frege’s requirement from the Julius Caesar Problem. To
know whether Caesar is a number, one only needs to check whether Caesar falls under all inductive concepts.

10



Lemma 4.3. ⊢ +x ∈ sx

Proof. Trivially, (+ =I.P ) entails that ⊢ +x = x for any term x. So, by (+λI.), ⊢ +[λv.v =
x]x and hence, by (+ϵI.), ⊢ +x ∈ sx.

Lemma 4.4. ⊢ +¬x ∈ 0

Proof. As before, ⊢ +x = x, so by (−¬I.), ⊢ −¬x = x, hence by (−λI.), ⊢ −[λv.¬v = v]x.
Thus, by (−ϵI.), ⊢ −x ∈ ϵ[λv.¬v = v], which by definition is just ⊢ −x ∈ 0. Hence +¬x ∈ 0
by (+¬I.).15

Proof of R1 Consider the following pseudo-derivation (superscripted 0 denotes an empty
discharge).

Lm 4.3
+x ∈ sx [+sx = 0]1

(+ =E.ϵP )
+x ∈ 0

Lm 4.4
+¬x ∈ 0 (+¬E.)−x ∈ 0 (Rejection∗)⊥ (SR∗

1)1−sx = 0 (+¬I.)
+sx ̸= 0

(+ →I.)0
+Ωx→ sx ̸= 0

(+∀I.)
+∀x(Ωx→ sx ̸= 0)

Note that it is not a derivation because (SR∗
1) is applied to a subderivation that contains

the lemmas, whose derivations do not preserve evidence. But this issue can be avoided by
rewriting the pseudo-derivation to the following one.

[+x ∈ sx]4 [+sx = 0]1
(+ =E.ϵP )

+x ∈ 0

[+¬x ∈ 0]2
(+¬E.)−x ∈ 0

⊥ (SR∗
1)1−sx = 0 (+¬I.)

+sx ̸= 0
(+ →I.)0

+Ωx→ sx ̸= 0
(+∀I.)

+∀x(Ωx→ sx ̸= 0) [⊖∀x(Ωx→ sx ̸= 0)]3

⊥ (SR1)2⊖¬x ∈ 0
Lm 4.4

+¬x ∈ 0
⊥ (SR1)4⊖x ∈ sx

Lm 4.3
+x ∈ sx

⊥ (SR1)3
+∀x(Ωx→ sx ̸= 0)

This is a derivation, since the lemmas do not occur under Smileian reductio*.
The method used in this proof can be generalized to the Theorem Theorem, a meta-logical

result about how theorems of BMLϵ can be used in restricted proof contexts.16

Theorem 4.5 (Theorem Theorem). If ⊢ +A and D is a pseudo-derivation that would be a
derivation save that the proof of +A occurs in a proof context restricted to evidence-preserving
inference, then there is a derivation D′ with the same premisses and conclusion as D.

Proof. Suppose we have such a pseudo-derivation D of Γ ⊢ +C . Schematically:
15This proof highlights the need for the extension rules for −. They are how one shows that something is not

in an extension.
16Incurvati and Schlöder (2023a) discuss a special case of this result.
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+A Γ
D
+C

Such pseudo-derivations can be rewritten to proper derivations as follows.

[+A]1 Γ

D
+C [⊖C]2

⊥ (SR1)1⊖A +A
⊥ (SR2)2
+C

The Theorem Theorem states that if +A as a theorem, it does not matter whether its proof uses
rules that do not preserve evidence. Loosely said, being committed to +A as a matter of logic
(i.e. from no assumptions) is evidence for +A.

Proof of R2. Note that for any P , +Syx,+Px ⊢∗ +Py. This is because +Syx is +[λv.v =
y]x which by (+λE.) entails +x = y. By (+ =E.P ), this and +Px entails +Py.

By Absoluteness, +x ∈ sy,+x ∈ ϵP ⊢∗ +y ∈ ϵP . Thus, by (+ =I.ϵP ), +x ∈ sy,⊢ +x = y.
By Lemma 4.3, ⊢ +x ∈ sx, so by (+ =E.ϵP ), +sx = sy ⊢ +x ∈ sy. Hence, +sx = sy ⊢ +x =
y. By Theorem 4.5, we may apply (+ →I.), so ⊢ +(sx = sy → x = y). The converse follows
immediately from the identity rules.

This concludes the proof of Theorem 4.2. As is known, R1–R3 plus Induction entail the
Dedekind–Peano Axioms in second-order logic.17 Since BMLϵ extends second-order logic and
by the Theorem Theorem one may treat R1–R3 as if they were axioms, it follows that BMLϵ

includes second-order arithmetic. One can appeal to R1–R3 and Induction while remaining in
the evidence-preserving fragment of BMLϵ, so full Conditional Proof and classical reductio are
available. Thus, every proof in second-order arithmetic can be expressed in BMLϵ.

Theorem 4.6. BMLϵ includes second order Peano Arithmetic.

One can now definen < m iff ∃k(Ωk∧k ̸= 0∧n+k = m) and define number-of as#P = n
iff Ωn ∧ P ≈ [λx.x < n], where ≈ is the usual second-order definition of equinumerosity.
Note that this assigns a number only to concepts with finite extensions.18

5 Foundations
In the preface to the Grundgesetze, Frege remarked that logicians routinely rely on talk of
extensions – later citing Leibniz and Boole as examples in §8 – and have merely failed to
articulate the laws governing this talk. He hence considers such talk to be an affordance of
logic itself and its laws to be laws of logic. Insofar as Frege had a definitive conception of
extension, it was surely centered on the idea that extensions, unlike concepts, are objects, and
that besides the syntactic differences this entails (cf. Frege, 1892a), talk of a concept and talk
of its extension are interchangeable.19

17This is because the following defines addition so that the usual recursive axioms follow by induction: n+m =
p iff ∀F ((F (0) = n ∧ ∀k(Ωk → (F (sk) = sF (k)))) → F (m) = p). Multiplication is analogous.

18One can extend the definition by piecemeal, e.g. #P = ω if P is equinumerous to Ω, and #P = 2ω if P is
equinumerous to [λv.∀x(x ∈ v → Ωx)], etc, but this yields no definition of transfinite number.

19In a famously confounding footnote in the Grundlagen (p. 80), Frege claims that extensions need no expla-
nation, but also suggests to replace talk of extensions with talk of concepts altogether; specifically, that instead
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If we take my extension rules to represent the meaning-conferring inferential practices
of extension talk, we may regard them as analytic, i.e. valid in virtue of what one means by
such talk, and therefore, arguably, as candidates for logical laws. We may also regard them as
explicating a Fregean conception of extension, as they allow unrestricted transitions between
extension-talk and concept-talk. By taking a particular stance on the nature of meaning – the
inferentialist one – one can recognize an important distinction in the sense in which the exten-
sion rules are valid in virtue of meaning. Namely, that they are valid in the sense of preserving
commitment rather than in the sense of preserving evidence. The addition of Absoluteness
does not complicate this picture, as it is motivated by recognizing the same distinction in the
same practices.

This may appear to be a radical departure from Frege. He claimed that the logical laws are
truths about real logical entities (such as extensions) and that analytic truths are simply those
that can be derived from the logical laws and definitions. But the appearance may be mislead-
ing. Incurvati and Schlöder (2023b, ch. 7) argue that although their inferential expressivism
does not require or entail objectively real entities, it also does not rule them out. In particular,
they contend that one may claim that the meaning-conferring rules are “latching onto” real
properties of real entities in the sense that they have become part of our languages in response
to such properties and entities. So they might reconcile with Frege by simply adding a meta-
physical claim to their semantic view; for whether Frege may reconcile with inferentialism,
see Dummett 1973.20

One can, however, assess Frege’s logicism while bracketing these matters. Logicism can
be understood as both a metaphysical and an epistemological claim: that numbers are logical
objects and that logic is how one learns truths about numbers. Put differently, logicism is
the attempt to reduce questions about the metaphysics and epistemology of numbers to the
metaphysics and epistemology of logic. Bracketing the questions about logic, we may ask
whether inferential expressivism can make good on the reduction.

Frege began, in the Grundlagen, with a discussion of the number-of operation and its lin-
guistic properties. He developed a formal definition of number on this basis, demonstrated
the existence of a series of such numbers, derived the laws of arithmetic, and showed how
to understand number-of talk in terms of this series. Thus, if Frege’s laws are laws of logic,
then logic entails that the number series exists and logical proof is how one learns truths about
numbers. I defined numbers differently, but immaterially so. Zermelo’s definition is motivated
by similar (if somewhat more abstract) observations about number talk being about a series
with a particular structure. Like Frege, I proceed by demonstrating that a series of such num-
bers exists, deriving the laws of arithmetic, and showing how to define number-of in terms
of this series. So BMLϵ entails that the number series exists and BMLϵ inference is how one
learns truths about numbers.

Thus, if Frege is right that talk of totalities in singular terms is part of logic and I am right

of defining numbers as extensions, one may define them as the corresponding concepts. This is in sharp contrast
to the postface of the Grundgesetze, where he laments that he sees no way to define numbers if not as extensions.
Frege’s changing understanding is visible in the intermediate works where he claims that extensions are objects
(1891) and that concepts cannot be objects (1892a). By the time of the Grundgesetze he may conceive of extensions
as how logicians approximate talk of concepts as objects and consider such approximations necessary for logic,
whence the logical objects. Cf. Klement’s (2012) stronger claim that Frege conceives of extensions as ‘nothing
but [a] concept itself considered as an object’.

20Another major divergence is that BMLϵ allows non-identical extensions with the same members, which is
ruled out by Basic Law V. Extensionality is not needed for deriving arithmetic and its inclusion would compli-
cate the construction in the Appendix, so I omit it. But one could add extensionality and (likely) address the
complications; see Field et al. 2017 for extensionality in a similar construction.
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that BMLϵ captures such talk, then BMLϵ vindicates the reductive ambitions of logicism. These
are big if ’s, of course. The extension rules are not ontologically neutral, putting pressure on
their supposed logicality and analyticity (cf. Boolos, 1997). Frege considered logic to come
with logical objects and, supposedly, disagrees with any conception of logicality as ontolog-
ically neutral. Inferential expressivists, Incurvati and Schlöder (2023b) argue, can respond to
ontological challenges with either deflationary moves or additional metaphysical claims about
these rules latching onto a prior reality. This allows them to treat rules like the extension rules
as analytic. But Incurvati and Schlöder (2023b) provide no criteria of logicality.

Thus, inferential expressivism vindicates the technical ambition of theGrundgesetze, namely
the reduction of arithmetic to comprehension-talk. To vindicate the reduction to logic, infer-
ential expressivists must take a further step. They may determine some parts of inferential
practice to be distinctively logical inferential practice and take Frege’s comments about the
use of extensions to show that comprehension-talk belongs to the logical practice, hence to
logic. Or they may take additional assumptions about the metaphysics of logic on board and
determine that the comprehension rules have latched onto this metaphysics. Both options
would vindicate Frege’s reduction of the metaphysics and epistemology of numbers to the
metaphysics and epistemology of logic. And if inferential expressivists ultimately conclude
that there are no such principled distinctions within inferential practice, then the reduction of
arithmetic to comprehension-talk by itself remains a substantive thesis about the metaphysics
and epistemology of numbers.

Either way, the rules of BMLϵ are Grundregeln, basic rules, of arithmetic.21

Appendix
An abstract is a term of the form ϵ[λx1...xn.A] whereA is a sentence. The arity of an abstract is
the number of distinct variables bound by λ. LetD be the set of all abstracts. An interpretation
I assigns to each first-order variable a member of D and to each second-order variable with
arity n a subset ofDn (whereD1 isD). Let σ : D →

⋃
n>0P(Dn) assign to each abstract with

arity n a subset of Dn. Intuitively, σ assigns to each abstract its extension.
The interpretation of terms is as follows. I(t) = t if t is an abstract, I(t) = I(x) if t is a

first order variable x, and I(t) = [λv1...vn.Pv1...vn] if t = ϵP for a second order variable P
with arity n. Satisfaction is defined as follows.

• I, σ |= t1...tn ∈ t iff n is the arity of I(t) and (I(t1), ..., I(tn)) ∈ σ(I(t)).

• I, σ |= Pt1...tn iff n is the arity of P and (I(t1), ..., I(tn)) ∈ I(P )

• I, σ |= t1 = t2 iff I(t1) = I(t2).

• I, σ |= A ∧B iff I, σ |= A and I, σ |= B.

• I, σ |= ¬A iff not I, σ |= A.

• I, σ |= [λv1...vn.A]t1...tn iff I, σ |= A[t1/v1, ..., tn/vn].

• I, σ |= ∀xA iff I, σ |= A[t/x] for all terms t.

• I, σ |= ∀PA iff I, σ |= A[[λv1...vn.B]/P ] for all sentences B, where n is the arity of P .
21I am grateful to Marcus Rossberg, Stewart Shapiro, and the audience of the EuPhilo 2nd Annual Conference,

held at the University of Bonn in 2023, for comments on earlier versions of this work.
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The task is to find the right σ, which will go by a supervaluation over functions τ .

Definition 1. τ : D →
⋃

n>0P(Dn) is coherent if for all sentences Ai:

1. τ(ϵ[λv1...vn.¬A1]) = Dn \ τ(ϵ[λv1...vn.A1]).

2. τ(ϵ[λv.A1 ∧ A2]) = τ(ϵ[λv.A1]) ∩ τ(ϵ[λv.A2]).

3. τ(ϵ[λv1...vn.A1 ∧ ... ∧ An]) = τ(ϵ[λv1.A1]) × ... × τ(ϵ[λvn.An]) if vi is not free in Aj

whenever i ̸= j.

Let I be any interpretation. For τ, σ : D →
⋃

n>0P(Dn) define τ ⊒ σ iff for all abstracts a,
τ(a) ⊇ σ(a). Then define a sequence σα.

• Base: σ0(a) = ∅ for all a.

• Successor: for each ϵ[λv1...vn.A] ∈ D, let (a1, ..., an) ∈ σα+1(ϵ[λv1...vn.A]) iff for all
coherent τ ⊒ σα it is the case that I, τ |= [λv1...vn.A]a1...an.

• Limit: if λ is a limit, σλ(a) =
⋃

α<λ σα(a) for all a.

The σα sequence is non-decreasing, so there is a fixed point σI . Then define:

• I |= +A iff for all coherent τ ⊒ σI , we have I, τ |= A,

• I |= −A iff for all coherent τ ⊒ σI , we have I, τ |= ¬A,

• I |= ⊖A iff there is a coherent τ ⊒ σI such that I, τ |= ¬A.

• never I |= ⊥

Write Γ |= φ iff for all I , if I |= ψ for all ψ ∈ Γ, then I |= φ.

Theorem 5.1 (Soundness). If Γ ⊢ φ, then Γ |= φ.

Proof. By induction on the construction of proofs D.
The rules of BML are as in Incurvati and Schlöder 2023a, the identity rules are trivial,

quantifiers are standard, and the conversion rules are coded in the model theory. It suffices to
check the extension rules and Absoluteness.

Assume without loss of generality that P is of the form [λv.A] and t is an abstract. The
cases where P is instead a second-order variable only requires minor modifications and the
cases where P has arity n > 1 are analogous. The cases where t is x or ϵQ (where x is a
first-order variable and Q is a second-order variable) only require replacing t with I(t).

• (+ϵI.). Suppose D ends with +Pt ⊢ +t ∈ ϵP . The induction hypothesis is I |= +[λv.A]t.
By definition, for all coherent τ ⊒ σI , I, τ |= [λv.A]t. As σI is a fixed point, t ∈
σI(ϵ[λv.A]). So for every τ ⊒ σI , t ∈ σI(ϵ[λv.A]). So for each such τ , by definition,
I, τ |= t ∈ ϵ[λv.A]. By definition, I |= +t ∈ ϵ[λv.A].

• (+ϵE.). Suppose D ends with +t ∈ ϵP ⊢ +Pt. The induction hypothesis is I |= +t ∈
ϵ[λv.A]. By definition, for all coherent τ ⊒ σI , I, τ |= t ∈ ϵ[λv.A]. Hence for all such
τ , it is the case that t ∈ τ(ϵ[λv.A]). If it were not the case that t ∈ σI(ϵ[λv.A]) there
would be a τ where this is not so. So t ∈ σI(ϵ[λv.A]). Because σI is a fixed point, for all
coherent τ , I, τ |= [λv.A]t. So, by definition, I |= +[λv.A]t.
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• (−ϵI.). Suppose D ends with −Pt ⊢ −t ∈ ϵP . The induction hypothesis is I |= −[λv.A]t.
By definition, for all coherent τ ⊒ σI , I, τ |= ¬[λv.A]t. This is I, τ |= [λv.¬A]t. As σI

is a fixed point, t ∈ σI(ϵ[λv.¬A]). So for every τ ⊒ σI , t ∈ τ(ϵ[λv.¬A]). Since the τ
are coherent, t /∈ τ(ϵ[λv.A]) So by definition I, τ |= ¬t ∈ ϵ[λv.A] for all such τ . By
definition, I |= −t ∈ ϵ[λv.A].

• (−ϵE.). Suppose D ends with −t ∈ ϵP ⊢ −Pt. The induction hypothesis is I |= −t ∈
ϵ[λv.A]. By definition, for all coherent τ ⊒ σI , I, τ |= ¬t ∈ ϵ[λv.A]. So for all such τ ,
it is the case that t /∈ τ(ϵ[λv.A]). As the τ are coherent, t ∈ τ(ϵ[λv.¬A]). If it were the
case that t /∈ σI(ϵ[λv.¬A]) there would be a τ where t /∈ τ(ϵ[λv.¬A]). Since this is not
so, t ∈ σI(ϵ[λv.¬A]). Because σI is a fixed point, for all coherent τ , I, τ |= [λv.¬A]t.
This is I, τ |= ¬[λv.A]t. So, by definition, I |= −[λv.A]t.

Turn to Absoluteness. Because the sequents in Absoluteness are evidence-preserving, we
may write them as material conditionals. So assume:

|= +¬([λv1.A1]t1 ∧ ... ∧ [λvn.An]tn ∧ ¬[λv.A]t)

And show that:

|= +¬(t1 ∈ ϵ[λv1.A1] ∧ ... ∧ tn ∈ ϵ[λvn.An] ∧ ¬t ∈ ϵ[λv.A])

The assumption means that for all I and all coherent τ ⊒ σI :

I, τ |= ¬([λv1.A1]t1 ∧ ... ∧ [λvn.An]tn ∧ ¬[λv.A]t)

That is:
I, τ |= [λv1...vnv.¬(A1 ∧ ... ∧ An ∧ ¬A)]t1...tnt

Then, since σI is a fixed point:

(t1, ..., tn, t) ∈ σI(ϵ[λv1...vnv.¬(A1 ∧ ... ∧ An ∧ ¬A)])

So for all coherent τ ⊒ σI :

(t1, ..., tn, t) /∈ τ(ϵ[λv1...vnv.(A1 ∧ ... ∧ An ∧ ¬A)]) (*)

Now, assume for reductio that there is a coherent τ such that :

I, τ ̸|= ¬(t1 ∈ ϵ[λv1.A1] ∧ ... ∧ tn ∈ ϵ[λvn.An] ∧ ¬t ∈ ϵ[λv.A])

That is:
I, τ |= t1 ∈ ϵ[λv1.A1] ∧ ... ∧ tn ∈ ϵ[λvn.An] ∧ ¬t ∈ ϵ[λv.A]

So for all i ≤ n, ti ∈ τ(ϵ[λvi.Ai]) and t /∈ τ(ϵ[λv.A]). τ is coherent, so t ∈ τ(ϵ[λv.¬A]) and so
(t1, ..., tn, t) ∈ τ(ϵ[λv1...vn.(A1 ∧ ... ∧ An ∧ ¬A)]). This contradicts (*).
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Frege, Gottlob (1892a) ‘Über Begriff und Gegenstand’. Vierteljahrsschrift für wissenschaftliche
Philosophie 16: 192–205.
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