
Mathematical Proof Methods for Logic
∗

Julian J. Schlöder

Winter 20/21

∗

I am indebted to my own teachers, Prof. Peter Koepke and Prof. Stefan Geschke, who taught me everything in these notes.

Prof. Geschke’s scriptum for Einführung in die Logik und Modelltheorie (Bonn, Summer 2010) provided an invaluable basis for the

compilation of these notes.

1

Contents
1 What are mathematical proof methods for logic? 3

1.1 Preliminaries . 3

1.2 Consequence Relations . 4

1.3 Recursive de�nitions and inductive proofs . 6

2 Propositional Logic 9
2.1 �e language of propositional logic . 9

2.2 Truth tables and valuations . 15

2.3 Equivalence and Substitution . 18

2.4 Expressive Power . 20

2.5 Semantic consequence . 23

2.6 �e Natural Deduction Calculus . 25

2.7 Syntactic Consequence . 30

2.8 Derived Rules . 35

2.9 �e Hilbert Calculus . 37

2.10 Soundness . 41

2.11 Completeness . 46

3 Predicate Logic 54
3.1 Languages and Structures . 54

3.2 Terms and their Interpretation . 57

3.3 �e Language of Predicate Logic . 59

3.4 Satisfaction and Models . 61

3.5 Substitution . 66

3.6 Natural Deduction for Predicate Logic . 68

3.7 Hilbert calculus . 71

4 Soundness for Predicate Logic 72

5 Completeness for Predicate Logic 78
5.1 Term Models . 78

5.2 Finding Henkin Extensions . 85

5.3 Proof of Completeness . 88

6 Compactness and the Löwenheim-Skolem�eorems 89
6.1 First Order �eories . 89

6.2 �e Compactness �eorem . 91

6.3 Sizes of Sets . 93

6.4 Sizes of Models . 95

7 Incompleteness 97
7.1 �e Arithmetisation of Syntax . 98

7.2 �e Fixed Point Lemma . 102

7.3 �e Incompleteness �eorem . 104

7.4 �e Unde�nability of Truth . 106

2

1 What are mathematical proof methods for logic?

We want to study logic from an abstract, mathematical perspective. If you try to think about what logic

fundamentally is and strip away everything concrete, you may arrive at something like this: if you have

some sentences (or propositions) and some other sentence (or proposition), logic tells you whether these

sentences entail that sentence. We want to make this idea very, very precise and thenmathematically prove

some things about di�erent versions of entailment.

1.1 Preliminaries

To get things started we need some mathematical terminology.

De�nition 1 (Set). It is di�cult to say what sets really are, but it is easy to say what they can do.

• Sets can contain things, for example s = {a, b, c} is a set that contains a, b and c. We write a ∈ s to
say that a is a member of s.

– But they don’t have to contain things. �ere is a set not containing anything: the empty set ∅.

– �ey can contain in�nitely many things, like the set of all natural numbers.

– Members of sets are not in any particular order. For example, {a, b, c} and {c, b, a} and {b, a, c}
are all the same set.

– Multiply-mentioned members are simply redundant, for example {a, a, a, a, b, c} is just a more

complicated way of writing the set {a, b, c}.

�e idea is that the only thing that ma�ers is whether something is a member, but not ‘where’ in the

set it is or ‘how o�en’.

• Sometimes, sets can be speci�ed as containing all the things having some property P ; in that case

we write {x | P (x)}. For example, {x | x is an even number} is the set of even numbers.

• Given two sets s, s′, one can form their intersection: s ∩ s′ is the set containing all things that are

both in s and in s′. Or, formally s ∩ s′ = {x | x ∈ s and x ∈ s′}.

• Given two sets s, s′, one can form their union: s∪ s′ is the set containing all things that are either in
s or in s′. Or, formally s ∪ s′ = {x | x ∈ s or x ∈ s′}.

We will o�en talk about sets and their subsets or supersets.

De�nition 2 (Subset and Superset). A set s is a subset of a set t (write: s ⊆ t) i�Def all members of s are

also members of t. We say that s is a proper subset of t (write: s ⊂ t) i�Def s ⊆ t and t has a member that

is not also a member of s.

s is a superset of t (write: s ⊇ t) i�Def t ⊆ s. And s is a proper superset of t (write: s ⊃ t) i�Def t ⊂ s.

Sets are incredibly useful. But sometimes we want a li�le bit more structure.

De�nition 3 (Ordered Sets). An ordered set is like a set, except that the order and multiple mentions

of members ma�ers. For example 〈a, b, c〉 contains the things a, b and c in that order. �e ordered sets

3

〈b, a, c〉, 〈a, a, b, c〉 or 〈a, b, c, a〉 are all di�erent from 〈a, b, c〉 and each other.

We call ordered sets ordered pairs if they have exactly two members, triples if they contain exactly three

members, quadruples if they contain exactly fourmembers… and althoughwe could continuewith quint-
, sept-, oct- and non- we give up and talk about 5-tuples, 6-tuples, 7-tuples and so on. (In the literature,

the term ‘tuple’ can occur as a synonym for ‘ordered pair’ but also as a synonym for ‘ordered set’; we will

just not use this term.)

�ere is a very useful operation we can de�ne on ordered sets: concatenation.

De�nition 4 (Concatenation). Given two ordered sets s and t, their concatenation sat is the ordered set
that contains all members of s (in their order) and then all members of t (in their order) and nothing else.

For example, 〈a, b, c〉a〈c, c, b, a〉 = 〈a, b, c, c, c, b, a〉.

With this we can de�ne the formal concept of a relation. You are familiar with many relations: ‘is equal’ or

‘smaller than’ are relations on the numbers. Using sets, we can be very precise about what relations are.

De�nition 5 (Relation). A relation over a set A is a set of ordered pairs of members of A.

For example, the ‘smaller than’ relation can be wri�en as the following:

s = {〈x, y〉 | y − x is positive}

You can verify as an exercise that x < y is the case if and only if 〈x, y〉 ∈ s.

1.2 Consequence Relations

With the preliminaries in place, we can state precisely what kind of abstract objects we are interested in.

De�nition 6 (Consequence Relation). A consequence relation is a relation between sets of sentences

[the premisses] and sentences [the conclusion].

If C is a consequence relation, it is convenient to write Γ ∴C ϕ instead of 〈Γ, ϕ〉 ∈ C .

A great many things are consequence relations.

• �e empty relation is a consequence relation. De�ne Cempty
to be the relation between sets of

sentences and sentences so that no sentence is ever related to any set of sentences. Or, more formally,

for all sets of sentences Γ and sentences ϕ, it is not the case that Γ ∴empty A. Even more formally,

Cempty = ∅.

According to the empty relation, no argument is valid. Even the argument ‘1 = 1 therefore 1 = 1’ is

invalid, since it is not the case that {1 = 1} ∴empty 1 = 1.

• �e trivial relation is a consequence relation. De�ne C trivial
to be the relation between sets of

sentences and sentences so that all sentences are related to all sets of sentences. Or, more formally, for

all sets of sentences Γ and sentences ϕ, it is the case that Γ ∴trivial A.

4

According to the trivial relation, all arguments are valid. Even the argument ‘1 = 1 therefore 1 6= 1’ is

valid, since it is the case that {1 = 1} ∴trivial 1 6= 1.

• �e membership relation is a consequence relation. De�ne Cmember
to be the relation between

sets of sentences and sentences so that Γ ∴member A if and only if A is a member of Γ. Or, formally

Cmember = {〈Γ, ϕ〉 | ϕ ∈ Γ}.

According to the membership relation, only very boring arguments are valid: those where the conclusion

is already a premiss. If your logic is the membership relation, you are never going to learn anything new

by logical inquiry.

We can now consider, in the abstract, what kind of properties consequence relations can have, which of

these properties we �nd desirable or useful, and which consequence relations have these properties. Here

are some interesting ones.

De�nition 7. A consequence relation C is:

• trivial i�Def it is the same as C trivial
. (A great many interesting-looking relations turn out to be this.)

• monotone i�Def if Γ ∴C ϕ, then for every superset Γ′ of Γ, it is the case that Γ′ ∴C ϕ.

• compact i�Def Γ ∴C ϕ if and only if there is a �nite subset Γ′ of Γ with Γ′ ∴C ϕ.

We are particularly interested in the properties of two particular consequence relations. You may have

heard either or both of the following ‘de�nitions’ of valid argument.

• An argument is valid i�Def in all situations where the premisses are true, the conclusion is true as

well. (�e argument necessarily preserves truth.)

• An argument is valid i�Def it proceeds by steps and every step instantiates a (primitively valid) argu-

ment form. (�ere is a proof of the conclusion from the premisses.)

�e �rst is a rough de�nition the semantic theory of consequence, as it appeals to the truth-conditions

of the parts of the arguments. �e second is a broad outline of the syntactic theory of consequence, as

it appeals to the forms of the parts of the argument. Instead of Csemantic
we will write |= and instead of

Csyntactic
we will write `. But we will get to this.

In this course, we do two things. First we will develop precise de�nitions for both notions of valid

argument for propositional logic and predicate logic. �en, we will demonstrate the following:

• Both semantic and syntactic consequence are compact. �is is very hard to prove for semantic con-

sequence, but very easy for syntactic consequence. Can you see why?

• Our precise version of syntactic consequence is soundwith respect to our precise version of semantic

consequence. �at is, when we proceed by valid argument forms, we are also preserving truth.

• Our precise version of syntactic consequence is complete with respect to our precise version of

semantic consequence. �at is, all truth-preserving arguments can be done step by step, syntactically.

Take a moment to appreciate how surprising completeness is. On the face of it, it seems extremely di�cult

(perhaps impossible) to ever verify that in all (metaphysically possible) situations something is the case.

5

However, checking whether a syntactic step-by-step argument is valid is extremely easy: we just need to

look at all of the steps and check whether they actually instantiate one of a small set of primitive forms.

So with completeness, we have a very easy way (checking an argument) to do something very di�cult

(checking all situations).

But how will we even get started proving things about consequence relations?

1.3 Recursive de�nitions and inductive proofs

Our �rst problem is that we haven’t yet said anything about what these ‘sentences’ are in the de�nition

of consequence relation. Natural language sentences are no good for our purposes, since they can be

ambiguous. We do not want to deal with this and hence are looking to de�ne a formal language in which

we can state (unambiguous) sentences for which we can then proceed to de�ne consequence relations. It

is important that we are extremely precise when stating these de�nitions.

We have, however, a problem: most likely, our formal language will allow us to de�ne in�nitely many

sentences. (�ink about it for yourselves whether our natural language supports in�nitely many sentences

as well.) So when we want to state the set of sentences we are interested in, we cannot simply list them all.

Let’s start with a simpler version of the same problem. �ere are in�nitely many natural numbers. How

can we de�ne the set of all natural numbers? If you ask someone what the natural numbers are, they might

respond with something like the following.

you know, 0, 1, 2, 3 and so on.

or if they had read the previous section

{0, 1, 2, 3, ...}

But neither ‘and so on’ nor ‘…’ are su�ciently precise. What if I tell you that this actually de�nes the set of

numbers that are the sum of three squares? You know,

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17 and so on.

What right would you have to tell me that I am wrong?

Towards a solution, it is useful to consider why the natural numbers are in�nite. �e reason is that every

number has a successor. Or, if we want to be very precise:

�eorem 1.1. �ere are in�nitely many natural numbers.

Proof. Assume towards a reductio that there are only �nitely many natural numbers. Let N be their max-

imum, i.e. the biggest natural number. LetN + 1 be the successor ofN . Note thatN + 1 > N . ButN was

assumed to be the biggest natural number, so N ≥ N + 1. �is is a contradiction. By reductio there aren’t

only �nitely many natural numbers, so there are in�nitely many.

�ite a few tacit assumptions go into this argument, but let’s not worry about this for now. �e crucial

observation is that the fact that every natural number has a successor. �is is the root of our problems with

6

in�nity here. Now, it is not di�cult to see that something like a converse of this is also true: every natural

number except 0 is a successor of another natural number. So the following is a good idea to de�ne the natural

numbers:

�e natural numbers are exactly 0 and all numbers obtained by iteratively taking successors.

‘Iteratively’ is already much be�er than ‘and so on’ but there may still be some confusion about what

precisely is meant by this. Such confusions can be put to rest as follows:

• (i) 0 is a natural number.

• (ii) for all n: if n is a natural number, then the successor of n is a natural number.

• (iii) nothing else is a natural number. (More precisely: there is no set s with 0 ∈ s and (if n ∈ s, then
n+ 1 ∈ s) that is a proper subset of the natural numbers.)

(i), (ii) and (iii) together are a recursive de�nition of the natural numbers. We will denote the set of all

natural numbers with N.

Recursive de�nitions are a very powerful method for de�ning (possibly in�nite) sets of things. �ey always

consist of an initial step like (i) that explicitly states some members of the set and a recursive step like (ii)

that states how to �nd further members by applying some operation to things that are already members.

�e condition (iii) then ensures that we get the set only containing the initial elements and everything

obtainable from them by recursion.

�is is how you make it precise what you mean by ‘and so on’ in de�nitions. But recursive de�nitions have

another advantage: they allow you to prove things about their members using the (extremely powerful)

technique of induction arguments. Induction arguments are the formal versions of ‘and so on’ in proofs.

Suppose you want to show the following.

�eorem 1.2. For all natural numbers n: the sum of n and all natural numbers smaller n is n·(n+1)
2 .

Perhaps you start to go about proving this as follows.

• 0: the sum of 0 and all natural numbers smaller 0 is just 0, which is indeed also
0·1
2 .

• 1: the sum 0 + 1 = 1, which is indeed
1·2
2 .

• 2: the sum 0 + 1 + 2 = 3, which is indeed
2·3
2 .

• 3: the sum 0 + 1 + 2 + 3 = 6, which is indeed
3·4
2 = 12

2 = 6.

• and so on

�is isn’t a very convincing ‘and so on’. We clearly have to do be�er. And indeed we can, by using the

method of proof by induction.

7

Proof by Induction (also called Mathematical Induction)

To prove that all natural numbers have property P , it su�ces to show the following:

• Base case: Show that P (0).

• Inductive step: Assume that for a �xed but arbitrary n it is the case that P (n) (this is the Induction
Hypothesis). Using this assumption, show that P (n+ 1).

You don’t have to believe me that this proof method works. We can prove that it works.

�eorem 1.3. Let P be a property. Suppose we have shown the Base case and Inductive step in a proof by

induction. �en for all natural numbers n, P (n).

Proof. Towards a reductio assume that not all natural numbers have property P . Let n be the smallest

natural number that does not have P . By the de�nition of the natural numbers, we are in one of two cases.

• Case 1: n = 0. According to the Base case, 0 has property P . Contradiction to our assumption that

n does not have property P .

• Case 2: there is a numberm such that n = m+1. Because n is the smallest number without property

P , it must be the case that m has property P . Because in the Inductive step, we have phrased the

induction hypothesis for arbitrary natural numbers, we can use it to infer P (m+1) from P (m). But

P (m+ 1) just is P (n). Contradiction to our assumption that n does not have property P .

• By condition (iii) there are no other cases.

�us we reach a contradiction in all cases. Hence all natural numbers have property P .

Now we can prove �eorem 1.2.

Proof. Show by induction that for all natural numbers n, the sum of n and all natural numbers smaller n

is
n·(n+1)

2 .

• Base case. If the sum of 0 and all natural numbers smaller 0 is 0, which is also
0·1
2 .

• Inductive step. �e induction hypothesis is: for a �xed but arbitrary n it is the case that the sum of

n and all natural numbers smaller n is
n·(n+1)

2 . It is to show that the sum of n + 1 and all natural

numbers smaller n+ 1 is
(n+1)·(n+2)

2 .

We know that the sum of n + 1 and all natural numbers smaller n + 1 can be wri�en as follows:

the sum of n+ 1 and n and all natural numbers smaller n. By the induction hypothesis, this can be

wri�en as n+ 1 + n·(n+1)
2 .

Now some arithmetic: n+ 1 + n·(n+1)
2 = 2(n+1)

2 + n·(n+1)
2 = 2(n+1)+n·(n+1)

2 = (n+1)(2+n)
2 .

By induction, we are done.

When you write an induction proof, it is very important to cover the base case (it is not always easy) and
to state the induction hypothesis (it is not always obvious what it is).

8

2 Propositional Logic

Propositional logic abstracts away from the contents of sentences and deals only in how the sentential

connectives (for example: ‘and’, ‘or’) contribute to logical consequence.

2.1 �e language of propositional logic

As said, our �rst goal is to de�ne a precise language for propositional logic. Again we need some basic

notions �rst.

De�nition 8 (Alphabet and Word). An alphabet is a set of symbols. A word over an alphabet is any

ordered set containing only symbols from the alphabet.

When we want to be very precise, we write symbols in quotes so that we do not confuse the symbol ‘n’

with the variable n.

For example, if our alphabet is {‘a’, ‘b’, ‘c’} then the following are words: 〈‘b’, ‘c’〉, 〈‘c’〉, 〈‘b’, ‘b’, ‘a’〉 and
〈‘a’, ‘a’, ‘a’, ‘a’, ‘a’〉 (there’s in�nitely many more). In almost all cases, it is clear that we are talking about

symbols and their sequences, so we will make our lives a bit easier by being lazy about the proper notation

for words over alphabets. We will write words as bc, c, bba, aaaaa and so on.

Object language and meta-langugae

�e reason for these quotes is that we are in danger of confusing the language that we use to describe

words and alphabets (the language in which these notes are wri�en) with the language that we are formally

de�ning as words over an alphabet (the language that we are going to prove things about).

�e language that we are formally de�ning and going to prove things about is the object language (as it
is the object of our study). �e language we are using to study the object language is themeta-language.

�ere is nothing mysterious about this. Object languages are mathematical objects like any other (they

are not that di�erent from numbers). It’s just that both contain le�ers and symbols and words and it is

sometimes ambiguous which language we mean when using a le�er or a symbol or a word.

Recall the operation for concatenation
a
. With our lazy notation, abcaccba = abcccba.

Now we are ready to de�ne the language of propositional logic. It consists of two building blocks.

De�nition 9. �e alphabet of propositional logic is the union of the following three sets.

• An in�nite set At of propositional atoms (these abstract away from actual sentences). For each natural

number n, let pn be an atom and for convenience also let p, q and r be atoms. Moreover let the symbol

⊥ be an atom (this is falsum and will denote falsity).

Formally, At = {pn | n ∈ N} ∪ {p, q, r} ∪ {⊥}.

• �e set of sentential connectives: {∧,∨,→,¬}.

�ese correspond to the sentential connectives of natural language: ‘and’ (conjunction, ∧), ‘or’ (dis-
junction, ∨), ‘if…then’ (conditional,→) and ‘not’ (negation, ¬).

9

Negation is called an unary connective because it modi�es a single sentence; the others are called

binary connectives because they connect two sentences.

• �e set of parentheses: {(,)}.

Many words over this alphabet are not what we would understand to be a formula. For example ((((, ((pq),

∧∧∧r are words over the alphabet of propositional logic. We still need some sort of syntax to sort out the

good words (the formulae) from the bad words.

De�nition 10. De�ne by recursion the set wff of well-formed formulae of propositional logic.

i. For all atoms a ∈ At, 〈a〉 ∈ wff.

ii. If A ∈ wff, then also ¬aA ∈ wff.

iii. If A ∈ wff and B ∈ wff, then also (aAa ∧a Ba) ∈ wff, (aAa ∨a Ba) ∈ wff and

(aAa →a Ba) ∈ wff.

iv. Nothing else is a member of wff.

Note that wri�en out non-lazily, the conjunction term in (iii) would be this:

if A ∈ wff, then also 〈‘(’〉aAa〈‘ ∧ ’〉aBa〈‘)’〉 ∈ wff.

Make sure you understandwhyA is not in quotes or angle brackets. �e reason is thatA is a variable

(in the meta-language) for a word in the object language. Similarly, a in (i) is a variable for an atom.

We will now be even more lazy: instead of ¬aA just write ¬A, instead of (aAa∧aBa) just write (A∧B)

and the same for the other connectives.

Some examples on how to use this de�nition.

• (p ∧ q) is a member of wff. Proof: p and q are atoms, so they are in wff. Hence by (iii), (p ∧ q) is in
wff.

• p ∧ q is not a member of wff. Proof: by (iv), one must be able to construct p ∧ q from (i), (ii) or (iii).

Because this is a sequence with more than one member, it cannot be case (i). Because this sequence

does not start with ¬, it cannot be (ii). Because this sequence does not start with (it cannot be (iii).

We can now start proving some substantial things about the well-formed formulae of propositional logic

(for short: the w�s). Our goal is to prove the Unique Construction �eorem stating that the members of

wff are structurally unambiguous.

�eorem 2.1 (Unique Construction). Let A ∈ wff. �en exactly one of the following is the case.

1. A = 〈a〉 for some a ∈ At.

2. �ere is a unique B ∈ wff such that A = ¬B.

3. �ere are unique B ∈ wff and C ∈ wff such that A = (B ∧ C).

4. �ere are unique B ∈ wff and C ∈ wff such that A = (B ∨ C).

5. �ere are unique B ∈ wff and C ∈ wff such that A = (B → C).

10

�is may seem very simple, but it really is not. Not just any recursive de�nition with multiple recursive

steps leads to unique constructions. For example, if we had not used parentheses at all in our de�nition

of the well-formed formulae of propositional logic, ¬p ∧ q would be well-formed, but it would not have a

unique constructions: it could either be constructed from the formulae ¬p and q using the recursive step

for ∧, or could be constructed from the formula p ∧ q using the recursive step for ¬. We need unique

constructions to later assign every well-formed formula a non-ambiguous truth condition.

We �rst need a li�le Lemma with a long-ish proof. Given two ordered sets s and t, say that s is a proper
initial segment of t if there is a non-empty ordered set s′ such that sas′ = t.

Lemma 2.2. No proper initial segment of a w� is a w�.

Proof. Note that the w�s are ordered sets. We can associate each ordered set with its length: the number

of elements.

Now, for reductio assume that there is a w� that has a proper initial segment that also is a w�. Let A be

such a w� with minimal length. �at is for all w�s B that are shorter than A, it is the case that no proper

initial segment of B is a w�.

It is clear that A cannot have length 1: any proper initial segment must have a shorter length and hence

have length 0. But there are no w�s of length 0. �us A must be formed by (ii) or (iii).

• Case 1. A = ¬B for some w�B. By assumption, there is an initial segment s ofA that is a w�. Note

that s must start with ¬. Now let s′ be the ordered set such that ¬as′ = s (i.e. s without the �rst

element). �en s′ is a proper initial segment of B.

But if s is a w� and s = ¬s′, then s′ must be a w�. So s′ is a proper initial segment of B and s′ is a

w�. But B is shorter than A, so this contradicts our assumption that A has minimal length.

• Case 2. A = (B ∧ C). By assumption, there is an initial segment s of A that is a w�. Note that s

must start with (. �us, s must be formed by (iii), so there are w�s D and E such that s = (D ∧E)

or s = (D ∨ E) or s = (D → E).

Look at B and D. We can distinguish three cases.

– Case 2.1: D is a proper initial segment of B. �en B is a shorter formula than A that has a

proper initial segment that is a formula. �is contradicts our assumption thatA is minimal with

that property.

– Case 2.2: B is a proper initial segment of D. �en D is a shorter formula than A (because D

is shorter than s is shorter than A) that has a proper initial segment that is a formula. �is

contradicts our assumption that A is minimal with that property.

– Case 2.3: D = B. �en we know that s = (B ∧ E). Because we also know that s is a proper

initial segment of (B ∧ C) it follows that E) is a proper initial segment of C). But this means

that E is a proper initial segment of C . �us C is a w� that has a proper initial segment that is

also a w�. �is contradicts our assumption that A is minimal.

11

In both cases, we reach a contradiction. Hence by reductio, there is no w� that has a proper initial segment

that is also a w�.

If this proof technique of choosing something minimal looks familiar from how we proved the e�cacy of

Proof by Induction, this is a good reason. Because we have de�ned the well-formed formulae recursively,

we de�ne an inductive proof technique.

Structural Induction (or: induction over the complexity of the formulae)

To prove that all well-formed formulae have property P , it su�ces to show the following.

• Base case: Show that P (A) is the case for all A ∈ At.

• Inductive steps:
– Negation: Assume that for a �xed but arbitrary A ∈ wff it is the case that P (A) (this is the

Induction Hypothesis for this step). Using this assumption, show that P (¬A).

– Binary connectives: Assume that for �xed but arbitrary A ∈ wff and B ∈ wff it is the case

that P (A) and P (B) (this is the Induction Hypothesis for this step). Using this assumption,

show that P ((A ∧B)), P ((A ∨B)) and P ((A→ B)).

We can prove that Structural Induction works very similarly to how we have proved that Mathematical

Induction works.

�eorem 2.3. LetP be a property. Suppose we have shown the Base case and all Inductive steps in a Structural

Induction. �en for all A ∈ wff, P (A).

Proof. Towards a reductio assume that there is a w�without the propertyP . It follows from this assumption

that there is a natural number n so that there is a w� of length n without property P and all w�s without

property P are at least n symbols long. (Put di�erently: n is the minimum length of a counterexample to

all w�s having P).

Let A be a w� with length n that does not have property P . We can distinguish the following cases.

i. A is an atom. But then A has property P by the Base case. Contradiction.

ii. A = ¬B for some B ∈ wff. Because the length of B is smaller than n, we know that P (B). But

from the Inductive step for negation, we can prove that P (A) from P (B). So P (A). Contradiction.

iii. A = (B ∨ C) for some B ∈ wff and C ∈ wff. Because the lengths of B and C are smaller than n,

we know that P (B) and P (C). But from the Inductive step for disjunction, we can prove that P (A)

from P (B) and P (C). So P (A). Contradiction.

iv. A = (B ∧ C) for some B ∈ wff and C ∈ wff. Because the lengths of B and C are smaller than

n, we know that P (B) and P (C). But from the Inductive step for conjunction, we can prove that

P (A) from P (B) and P (C). So P (A). Contradiction.

v. A = (B → C) for some B ∈ wff and C ∈ wff. Because the lengths of B and C are smaller than

n, we know that P (B) and P (C). But from the Inductive step for conditionals, we can prove that

P (A) from P (B) and P (C). So P (A). Contradiction.

12

�ere are no more cases, so we reach a contradiction. By reductio, all w�s have property P .

Structural Induction is a very powerful technique. We can use it to prove the Unique Construction�eorem.

Proof of �eorem 2.1. It is easy that every well-formed formula can be wri�en as one of (1)–(5), but the

di�cult part is to show that exactly one of the �ve cases hold. We will show both at the same time this by

Structural Induction.

• Base case: Suppose A is an atom. �en clearly, (1) is the case. None of (2)–(5) are the case, because

in these cases, the �rst symbol in A would be a parenthesis or ¬. But A is an atom and hence is a

sequence of one symbol that is not a parenthesis or ¬.

• Inductive steps:

– Negation. Induction hypothesis: For a �xed but arbitrary A ∈ wff it is the case that exactly

one of (1)–(5) holds.

From the IH, show that exactly one of (1)–(5) holds for ¬A.

Clearly, (2) holds for ¬A. Moreover, (1) does not holds for ¬A as ¬A contains more than one

symbol. Also, if either of (3), (4) or (5) would hold, ¬A would start with a parenthesis. But it

does not.

Finally, we need to check that if ¬A = ¬B, then also A = B. But this is trivial.

– Conjunction. Induction hypothesis: For �xed but arbitrary A ∈ wff and B ∈ wff it is the case

that exactly one of (1)–(5) holds.

From the IH, show that exactly one of (1)–(5) holds for (A ∧B).

Clearly, (3) holds for (A ∧ B). Moreover, (1) does not hold for (A ∧ B) as (A ∧ B) contains

more than one symbol and (2) does not hold because (A ∧ B) does not start with ¬. We also

need to rule out (4) and (5):

∗ If (4) holds, there are w�s C and D such that (A ∧ B) = (C ∨D). Note that it cannot be

the case that A = C because the in the ordered set (A ∧ B) the next symbol a�er (A is

∧, not ∨. �us it must be the case that either (A is a proper initial segment of (C or (C

is a proper initial segment of (A. But neither can be the case, because this would mean

that A is a proper initial segment of C , or C is one of A. But by the Lemma, proper initial

segments of w�s are not w�s.

∗ If (5) holds, there are w�s C and D such that (A ∧ B) = (C → D). �is is exactly as the

case for ∨.

It remains to show that there are no C 6= A andD 6= B such that (A ∧B) = (C ∧D). Again,

this cannot be the case because if C 6= A then either C is a proper initial segment of A or C

is a proper initial segment of A, which is ruled out by the Lemma. �us C = A. But then

immediately also D = B.

13

– �e inductive steps for disjunction and conditionals are analogous to conjunction.

�is concludes the induction.

It is legitimate (also on the homeworks and in proofs you will write a�er this course) to claim that some

inductive steps are analogous to others. But be very careful when claiming analogy, as sometimes

things that look analogous may not be—and for very non-obvious reasons.

�e upshot of the Unique Construction �eorem is that we can now de�ne properties of w�s by appealing

to how they are constructed. One useful notion is the main operator of a formula.

De�nition 11 (Main Operator). Let A ∈ wff. If A is not an atom, ismain operator is de�ned as follows:

• ¬ if there is a B ∈ wff with A = ¬B.

• ∧ if there are B ∈ wff and C ∈ wff with A = (B ∧ C).

• ∨ if there are B ∈ wff and C ∈ wff with A = (B ∨ C).

• → if there are B ∈ wff and C ∈ wff with A = (B → C).

Note that without Unique Construction, it could be ambiguous what “the” main operator of a formula is.

Even more usefully, Unique Construction allows us to recurse on the construction of the formulae. An

example for such a recursive de�nition is the de�nition of the subformulae of a w�.

De�nition 12 (Subformulae). �e function sf maps every w� to the set of its subformulae. It is de�ned
as follows:

i. Base: sf(A) = {A} if A is atomic.

ii. Recursion step negation: sf(A) = {A} ∪ sf(B) if there is a B ∈ wff with A = ¬B.

iii. Recursion for the binary connectives: sf(A) = {A} ∪ sf(B) ∪ sf(C) if there is a B ∈ wff with

A = (B ∧ C) or A = (B ∨ C) or A = (B → C).

Again, it is due to Unique Construction that we know for every A which recursive step we are in. Here’s

an example of how this de�nition works:

• sf(((p ∧ q) ∧ r)) = {((p ∧ q) ∧ r)} ∪ sf((p ∧ q)) ∪ sf(r). To determine this, we need to compute

sf((p ∧ q)) and sf(r)

We know that sf((p ∧ q)) = {(p ∧ q)} ∪ sf(p) ∪ sf(q). To determine this, we need to compute sf(p)

and sf(q). But we have reached base cases here, so sf(p) = {p} and sf(q) = {q}. Pu�ing everything
together, sf((p ∧ q)) = {(p ∧ q, q, p)}.

For sf r we already are in a base case; sf(r) = {r}.

�us, sf(((p ∧ q) ∧ r)) = {((p ∧ q) ∧ r), (p ∧ q), p, q, r}.

�is may appear to be a lot of e�ort to compute something that you might be able to determine just by

looking at a formula. �e advantage of having gone through Unique Construction in order to be able to

de�ne a function like sf is as follows. Inmany proofs, wemay be talking about a �xed but unknown formula

14

A. We may moreover want to talk about the set of subformulae of A. �e recursive de�nition of sf allows

us to do so without knowing which concrete formula the variable A stands for.

2.2 Truth tables and valuations

We are now ready to de�ne the meaning of the connectives. As said, propositional logic abstracts away

from the contents of concrete sentences. All we are interested in is what the connectives contribute when

the sentences they connect are true or false.

De�nition 13 (Truth Values). �e set {0, 1} is the set of truth values. 1 stands for truth and 0 for falsity.

De�nition 14 (Valuation). A valuation is a function V that maps every atom to a truth value. In short,

V : At→ {0, 1}. �e value of Falsum is always falsity, i.e. V(⊥) = 0.

Valuations assign truth values to the atoms. �e meaning of the connectives is given by how such assign-

ments are extended to complex formulae.

De�nition 15 (Extensions of Valuations). Let V be a valuation. �e extension of V is the function from

w�s to truth values (short: V∗ : wff→ {0, 1}) de�ned by the following recursion.

i. Base: if A ∈ wff is an atom, then V∗(A) = V(A).

(Note a slight abuse of notation here: technically, an atomic formula A is an ordered set containing

a single atom, but not itself an atom. So we should really write V∗(A) = V(a) where A = 〈a〉 for
some a ∈ At. But it is harmless to ignore this.)

ii. �e recursive steps are given by the following truth tables:

Negation:

V∗(¬B) V∗(B)

0 1

1 0

Conjunction:

V∗((B ∧ C)) V∗(B) V∗(C)

1 1 1

0 1 0

0 0 1

0 0 0

Disjunction:

V∗((B ∨ C)) V∗(B) V∗(C)

1 1 1

1 1 0

1 0 1

0 0 0

Conditional:

V∗((B → C)) V∗(B) V∗(C)

1 1 1

0 1 0

1 0 1

1 0 0

Given a valuation V and a formula A ∈ wff, V∗(A) is the truth value of A given V .

Due to our prior work, we know that for every valuation V this de�nes exactly one extension V∗.

Using these de�nitions, we can start classifying formulae into some familiar categories.

De�nition 16. A formula A ∈ wff is

• a tautology if for all valuations V , V∗(A) = 1;

15

• satis�able if there is a valuation V such that V∗(A) = 1;

• a contradiction if it is not satis�able.

• contingent if it is neither a tautology nor a contradiction.

But again we are facing a problem with in�nity. Clearly, there are in�nitely many valuations V . So if we

want to show that some formula A is a tautology, it seems that we have to check all of them.

�ere is an intuitive solution to this problem. When we are looking for the truth value of A given V , it
only really ma�ers what V is assigning to the propositional atoms that occur inA. �at V is also assigning

a truth value to the in�nity of other atoms is just useless extra information. Note that only �nitely many

atoms occur in any given formula A and there are only �nitely many ways to assign a truth value to all of

them. As usual, this kind of reasoning can be made very, very precise.

First, we de�ne the set of atoms occurring in a formula. We do so recursively.

De�nition 17 (Atoms in a Formula). �e function at maps every w� A to the set of atoms occurring in
A. It is de�ned as follows:

i. Base: at(A) = {A} if A is itself atomic.

(Again the fact that technically A is an ordered set containing an atom, but not itself an atom, is

ignored here and henceforth.)

ii. Recursion step negation: at(A) = at(B) if there is a B ∈ wff with A = ¬B.

iii. Recursion for the binary connectives: at(A) = at(B) ∪ at(C) if there are B ∈ wff and C ∈ wff

with A = (B ∧ C) or A = (B ∨ C) or A = (B → C).

Using this de�nition, we can prove the Coinciding Valuations �eorem.

�eorem 2.4 (Coinciding Valuations). Let A be a w� and let V1 and V2 be valuations such that for all

p ∈ at(A), V1(p) = V2(p). �en V∗1 (A) = V∗2 (A).

Proof. By Structural Induction on A. Fix two valuations V1 and V2.

• Base: If A is an atom and for all p ∈ at(A), V1(p) = V2(p), then V∗1 (A) = V1(A) by de�nition,

which is V2(A) by assumption, which is V∗2 (A) by de�nition.

• Inductive step for negation. Induction hypothesis: For a �xed but arbitrary A ∈ wff it is the case

that if for all p ∈ at(A), V1(p) = V2(p), then also V∗1 (A) = V∗2 (A).

It is to show that if for all p ∈ at(¬A), V1(p) = V2(p), then also V∗1 (¬A) = V∗2 (¬A). We can

distinguish two cases:

– Case 1: it is not the case that for all p ∈ at(¬A), V1(p) = V2(p). �en what is to show is

vacuously true.

– Case 2: it is the case that for all p ∈ at(¬A), V1(p) = V2(p). Because we know that at(¬A) =

at(A), it follows from the IH that V∗1 (A) = V∗2 (A). By de�nition the values of V∗1 (¬A) and

16

V∗2 (¬A) depend only on the values of, respectively, V∗1 (A) and V∗2 (A). Because the la�er are

the same, the former are hence the same as well.

�ere are no more cases, and in both we have shown what was to show.

• Inductive step for conjunction. Induction hypothesis: For �xed but arbitrary A ∈ wff and B ∈ wff

it is the case that (a) if for all p ∈ at(A), V1(p) = V2(p), then also V∗1 (A) = V∗2 (A); and (b) if for all

p ∈ at(B), V1(p) = V2(p), then also V∗1 (B) = V∗2 (B).

It is to show that if for all p ∈ at((A ∧B)), V1(p) = V2(p), then also V∗1 ((A ∧B)) = V∗2 ((A ∧B)).

We can distinguish two cases:

– Case 1: it is not the case that for all p ∈ at((A ∧ B)), V1(p) = V2(p). �en what is to show is

vacuously true.

– Case 2: it is the case that for all p ∈ at((A ∧ B)), V1(p) = V2(p). Because we know that

at((A ∧B)) = at(A) ∪ at(B), it follows that also for all p ∈ at(A), V1(p) = V2(p) and for all

p ∈ at(B), V1(p) = V2(p).

�us, it follows from the IH that V∗1 (A) = V∗2 (A) and V∗1 (B) = V∗2 (B). As above, the values

of V∗1 ((A ∧ B)) and V∗2 ((A ∧ B)) depend only on the values of, respectively, V∗1 (A) & V∗1 (B)

and V∗2 (A) & V∗2 (B). Because the la�er are pairwise the same, the former are hence the same

as well.

�ere are no more cases, and in both we have shown what was to show.

• �e other inductive steps are analogous.

�is concludes the induction.

Using the Coinciding Valuations �eorem, we can determine whether a formula is tautological (etc.) in

�nite time. Given a formula A, �rst determine the set at(A). �is set contains a �nite number n of pro-

positional atoms, so there are only 2n possible assignments of truth values V : at(A) → {0, 1}. To know

whether A is a tautology it now su�ces to pick for each of these V a valuation V that agrees with V

on the values of all atoms in at(A) and check V∗(A). (And similar for satis�ability, contradictoriness,

contingency.) We can systematise this process in the Truth Table Method.

Truth Table Method

Given someA, �nd the set of its subformulae sf(A) and atoms at(A). Assign to every subformula a column

in a table and to every possible function V : at(A)→ {0, 1} a row in this table.

Fill the columns for atomic formulae with the values assigned to them by V in every row.

�en determine (according to the truth tables) in each row the truth values of the subformulae of A that

are formed directly from atoms. Continue determining the truth value of more complex subformulae until

A is reached.

Here’s an example. Above, we determined the subformulae of ((p ∧ q) ∧ r) to be sf(((p ∧ q) ∧ r)) =

{((p∧ q)∧ r), (p∧ q), p, q, r}. �e atoms are {p, q, r}. So we construct a table looking like this to conclude

17

that ((p ∧ q) ∧ r) is satis�able and contingent.

p q r (p ∧ q) ((p ∧ q) ∧ r)

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

p q r (p ∧ q) ((p ∧ q) ∧ r)

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

p q r (p ∧ q) ((p ∧ q) ∧ r)

1 1 1 1 1

1 1 0 1 0

1 0 1 0 0

1 0 0 0 0

0 1 1 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

Here are some useful tautologies.

�eorem 2.5. Let A be any w�. �en the following are tautologies.

• Law of Identity: (A→ A).

• Law of Excluded Middle: (A ∨ ¬A).

• Law of Non-Contradiction: ¬(A ∧ ¬A).

�ese are the three traditional laws of logic.

2.3 Equivalence and Substitution

Some di�erent formulas are equivalent in that they have the same truth conditions. Formally:

De�nition 18 (Equivalence). Well-formed formulae A and B are equivalent (write: A ≈ B) i�Def for all

valuations V it is the case that V∗(A) = V∗(B).

Using the Truth Table Method we can check whether two formulae are equivalent. Here are some useful

equivalences.

�eorem 2.6. Let A, B and C be w�s.

• Conjunction is associative: ((A ∧B) ∧ C) ≈ (A ∧ (B ∧ C)).

• Conjunction is commutative: (A ∧B) ≈ (B ∧A).

• Disjunction is associative: ((A ∨B) ∨ C) ≈ (A ∨ (B ∨ C)).

• Disjunction is commutative: (A ∨B) ≈ (B ∨A).

• Distributivity: (A ∧ (B ∨ C)) ≈ ((A ∧B) ∨ (A ∧ C)) and

(A ∨ (B ∧ C)) ≈ ((A ∨B) ∧ (A ∨ C))

• De Morgan’s Laws: ¬(A ∧B) ≈ (¬A ∨ ¬B) and

¬(A ∨B) ≈ (¬A ∧ ¬B).

• (A ∨B) ≈ ¬(¬A ∧ ¬B).

• (A ∧B) ≈ ¬(¬A ∨ ¬B).

�e proofs are all straightforward applications of the Truth Table Method and are le� as exercises. We
will henceforth drop parentheses if their only purpose is to disambiguate equivalent formulae.

18

For example, instead of ((p ∧ q) ∧ r) we will write (p ∧ q ∧ r). We will also sometimes drop outermost

parentheses, as they do not help to disambiguate anything, so we may also write p ∧ q ∧ r.

�e important property of equivalent formulas is that they can be substituted for one another without

a�ecting truth value.

De�nition 19 (Substitution). Let A and B be w�s and a be an atom. De�ne by recursion on A the sub-
stitution of B for a in A, wri�en as A[B/a].

• Base: if A is an atom, then A[B/a] = B if A = a and A[B/a] = A otherwise.

• Recursive steps: if A = ¬C , then A[B/a] = ¬aC[B/a];

if A = C ∧D, then A[B/a] = (C[B/a]a ∧a D[B/a]);

if A = C ∨D, then A[B/a] = (C[B/a]a ∨a D[B/a]);

if A = C → D, then A[B/a] = (C[B/a]a →a D[B/a]);

Using this de�nition, we can prove the following.

�eorem 2.7 (Substitution�eorem). LetA,B andC be well-formed formulae and a be an atom. IfA ≈ B,

then C[A/a] ≈ C[B/a].

Proof. Fix arbitrary A, B and a with A ≈ B and prove the theorem by induction on the construction of C .

• Base case: if C is an atom and C 6= a, then C[A/a] = C = C[B/a] and C ≈ C trivially. If C = a,

then C[A/a] = A and C[B/a] = B and A ≈ B by assumption.

• Inductive step negation. Suppose that C = ¬D. �e induction hypothesis is: D[A/a] ≈ D[B/a]. It

is to show that (¬D)[A/a] ≈ (¬D)[B/a]. By de�nition of substitution, this means that it is to show

that ¬aD[A/a] ≈ ¬aD[B/a]

By the induction hypothesis D[A/a] and D[B/a] have the same truth value under all valuations V .
But then also their negations have the same truth values.

• Inductive step conjunction. Suppose that C = D ∧ E. �e induction hypothesis is: D[A/a] ≈
D[B/a] and E[A/a] ≈ E[B/a]. It is to show that (D ∧ E)[A/a] ≡ (D ∧ E)[B/a]. By de�nition of

substitution, this means it is to show that (D[A/a] ∧ E[A/a]) ≈ (D[B/a] ∧ E[B/a]).

By the induction hypothesis D[A/a] and D[B/a] have the same truth value under all valuations V
andE[A/a] andE[B/a] have the same truth value under all valuations. �en alsoD[A/a]∧E[A/a]

and D[B/a] ∧ E[B/a] have the same truth value under all valuations.

• �e other inductive steps are analogous.

�is concludes the induction.

�is may not yet be quite what one expects from the slogan that equivalent formulae are intersubstitutable.

We may de�ne the substitution of one formula for another as follows. To de�ne C[B/A], �nd a formula

C ′ and an atom a ∈ at(C ′) such that C = C ′[A/a]. If there is such a C ′, let C[B/A] =Def C
′[B/a];

19

else let C[B/A] =Def C . It follows immediately from the Substitution �eorem that if A ≈ B, then

C ′[B/a] ≈ C ′[A/a] and therefore C ≈ C[B/A].

�e following result will allow us to express equivalence in the object language.

�eorem 2.8. Let A and B be w�s. A ≈ B if and only if ((A→ B) ∧ (B → A)) is a tautology.

Proof. Let A and B be w�s.

⇒ le�-to-right: Assume that A ≈ B and show that for every valuation V , it is the case that V(((A →
B)∧ (B → A))) = 1. So let V be any valuation. �e value of ((A→ B)∧ (B → A)) can be computed by

the following table.

V∗(A) V∗(B) V∗(A→ B) V∗(A→ B) V∗(((A→ B) ∧ (B → A)))

1 1 1 1 1

1 0 0 1 0

0 0 1 1 1

0 1 1 0 0

But by assumption, V∗(A) = V∗(B), so the second and fourth row are ruled out.

�us V∗(((A → B) ∧ (B → A))) = 1. As V was arbitrary, we conclude that for all V , V∗(((A →
B) ∧ (B → A))) = 1.

⇐ right-to-le�: Assume that ((A → B) ∧ (B → A)) is a tautology. Show that for every valuation V ,
V∗(A) = V∗(B). So let V be arbitrary. We can apply the truth table method in a backwards way.

Look at the truth table in the previous step. By assumption, V∗(((A → B) ∧ (B → A))) = 1, so we

must be in the �rst or third rows. But in either case V∗(A) = V∗(B). As V was arbitrary, this goes for all

valuations V .

We can shorten the statement of this last result by introducing an abbreviation.

De�nition 20. Let (A↔ B) be an abbreviation of ((A→ B) ∧ (B → A)).

�at is, whenever we write↔, we keep in mind that we actually mean ((A → B) ∧ (B → A)), but just

don’t want to write out this long formula. Another useful abbreviation is to write the Verum symbol > as

an abbreviation of ⊥ → ⊥. Note that V∗(>) = 1 for all valuations.

2.4 Expressive Power

We have seen above that some connectives can be de�ned from others. �is means that, for example, we

would not strictly speaking need the symbol ‘ ∨ ’ in our language as we could also regard A ∨ B as an

abbreviation of ¬(¬A ∧ ¬B).

�is raises the question of how many connectives we actually need. Do we need more than the ones we

have to express some interesting formulae? Note that there are 2(2
2) = 16 possible truth tables for binary

20

connectives but we only have been using three. We could also imagine trinary connectives (like if … then

… else). �ere are 2(2
3) = 256 possible trinary connectives. Do we need some of them?

We can make this question precise by using the following de�nition.

De�nition 21 (Boolean Function). Let P be a �nite set of atoms. A Boolean function on P is a function

f that maps every function from P to truth values to a truth value. Formally, f : {V | V : P → {0, 1}} →
{0, 1}.

One may think of the Boolean functions as the possible truth tables. A Boolean function speci�es how to

obtain a truth value from any possible valuation of a �nite set of input values. �at’s the kind of thing you

can display in a truth table.

Given a formula A, we can de�ne a corresponding Boolean function fA on at(A). To wit: For all functions

V : at(A)→ {0, 1} let V be any valuation that assigns something to all the atoms not in at(A) and de�ne

fA(V) = V∗(A). Note that by the Coinciding Valuations �eorem, it does not ma�er what we assign to

the atoms not occurring in A. So the value de�nition of fA(V) is unambiguously de�ned. We call fA the

Boolean function expressed by A.

So here is a natural desideratum: our language should be expressive enough so that we can express every

Boolean function, i.e. so that every possible truth table can be wri�en as an object-language formula. �at

is the maximum expressivity we can get out of propositional logic.

De�nition 22 (Propositional Basis). A subset L of {⊥,¬,∧,∨,→} is called a propositional basis i�Def

when the language of propositional logic is de�ned only for symbols from L, then for every �nite set of

atoms P and every Boolean function f on P , there is a w� A with at(A) = P and f = fA.

A propositional basis is also sometimes called a functionally complete set, but we would not want to confuse

this use of ‘complete’ with the Completeness theorem that we show later.

Our �rst task is to show that our full language {⊥,¬,∧,∨,→} is a propositional basis. �is follows from

the slightly stronger result that every Boolean function is expressed by a formula in normal form.

�e following de�nitions look a lot more scary than they actually are. First we want to be able to express

formally that a formula can be wri�en as a long conjunction or as a long disjunction.

• Given a number n and a set {Ai | i < n} of formulae (sloppily: {A0, ..., An−1}), we can de�ne∧
i<nAi, the conjunction of the Ai, by recursion on n.

Base case n = 1:
∧
i<1Ai = A0. Recursive step:

∧
i<nAi = (

∧
i<(n−1)Ai) ∧An−1.

Having the precise de�nition in our minds, we can be sloppy and write

∧
i<nAi as A0 ∧ ... ∧An−1.

• Analogously, we can recursively de�ne the disjunction of the Ai,
∨
i<nAi and allow ourselves to

sloppily write it as A0 ∨ ... ∨An−1.

Now consider the following de�nition.

21

De�nition 23 (Disjunctive Normal Form). A w� A is in disjunctive normal form (DNF) i�Def there is

a number n and a set of formulae {A0, ..., An−1} such that:

i. A = A0 ∨ ... ∨An−1.

ii. for allAi there is a number ni and a set of formulae {Bi,j | j < ni} such thatAi = Bi,0∧...∧Bi,ni−1

is the conjunction of the Bij ; and

iii. for all i and j, Bi,j is either an atom or the negation of an atom.

Using our formal de�nitions, we can write A concisely as A =
∨
i<n

∧
j<ni

Bi,j .

�at is, a formulaA is in disjunctive normal form if it is a disjunction where every disjunct is a conjunction

of atoms and negated atoms. Essentially, a formula in disjunctive normal form is just a list of all the

conditions under which it is true: (these atoms are true and those are false) or (these atoms are true and those

are false) or ….

�eorem 2.9. For every �nite set of atoms P and every Boolean function f on P , there is a formula A in

disjunctive normal form with at(A) = P and fA = f .

Proof. Fix some arbitrary P and some Boolean function f on P . Let m be the number of atoms in P and

write P as P = {pj | j < m}.

Let T be the set of all V : P → {0, 1} such that f(V) = 1. Note that T is �nite. So let n be the number of

its members and write T = {Vi | i < n}.

Now, for every i < n and j < m, we can de�ne the formula Bi,j as follows: Let Bi,j = pj i�Def Vi(pj) = 1

and let Bi,j = ¬pj i�Def Vi(pj) = 0.

For every i < n de�ne Ai =Def Bi,0 ∧Bi,1 ∧ ... ∧Bi,m−1. �en �nally de�ne A =Def A0 ∨ ... ∨An−1.

Clearly, A is in disjunctive normal form. We need to prove that f = fA. So let V be any function V : P →
{0, 1}. It is to show that f(V) = fA(V).

• Case 1: f(V) = 1. In this case there is some i < n such that V = Vi. Note that for any valuation V
that agrees with V on all atoms in P it is the case that: for all j < m, V∗(Bi,j) = 1 by the Truth Table

for negation. �erefore, V∗(Ai) = 1 by the Truth Table for conjunction. And hence, V∗(A) = 1 by

the Truth Table for disjunction. �us fA(V) = 1.

• Case 2: f(V) = 0. In this case there is no i < n such that V = Vi. �is means that V must disagree

with every member of T on the truth value of at least one atom. Formally, this means that for every

i < n there is a j < m such that V (pj) 6= Vi(pj).

Let V be any valuation that agrees with V on all atoms in P . By the above and the Truth Table for

negation, for every i there is a j such that V∗(Bi,j) = 0. Hence by the Truth Table for conjunction,

for every i, V∗(Ai) = 0 and hence by the Truth Table for disjunction, V∗(A) = 0.

�is concludes the proof. Note that if we were to be very formal here, we would use in both steps an

induction over the de�nition of

∧
and

∨
.

22

An important consequence of this theorem is that {¬,∧,∨} is a propositional base because these symbols

su�ce to write disjunctive normal forms. Hence also {⊥,¬,∧,∨,→} is a propositional base, but Falsum
and the conditional appear to be super�uous. Moreover, since we know that we can abbreviate A ∨ B by

¬(¬A∧¬B) and abbreviateA∧B by ¬(¬A∨¬B) we also know that {¬,∧} and {¬,∨} are propositional
bases.

�is is our �rst substantial result about logic. We can express every possible truth table by only using

two connectives. �is is something that might not have been obvious when we began looking into the

formal properties of logic. If you believe that the logic we use casually in ourmeta-languagewas adequately

formalised in propositional logic you have also learned something about our actual logical practices: that

in principle you could strike, say, ‘or’ from your vocabulary.

Another important upshot is that for every w� A there is a formula ADNF
in disjunctive normal form such

that A ≈ ADNF
. �ere is also a conjunctive normal form.

De�nition 24 (Conjunctive Normal Form). A w� A is in conjunctive normal form (CNF) i�Def there is

a number n and a set of formulae {A0, ..., An−1} such that:

i. A = A0 ∧ ... ∧An−1.

ii. for allAi there is a number ni and a set of formulae {Bi,j | j < ni} such thatAi = Bi,0∨...∨Bi,ni−1

is the disjunction of the Bij ; and

iii. for all i and j, Bi,j is either an atom or the negation of an atom.

Using our formal de�nitions, we can write A concisely as A =
∧
i<n

∨
j<ni

Bi,j .

�e proof that every formula is equivalent to a formula in CNF is le� as an exercise.

2.5 Semantic consequence

Now we can �nally de�ne the semantic consequence relation |=. Recall that we wanted this relation to

express something like ‘in all situations where all the premisses are true, also the conclusion is true.’ Using

valuations, we can express this now as follows.

De�nition 25. Let Γ be a set of w� and A be a w�. Γ |= A i�Def for all valuations V , if V∗(B) = 1 for all

B ∈ Γ, then V∗(A) = 1.

Or, in words, the premisses Γ semantically entail the conclusionA i� all valuations that make all premisses

true also make the conclusion true. �e valuations are here taking the place of the somewhat nebulous

notion of a situation. As all we care about in propositional logic is whether a sentence is true or not, all we

need to know about a situation is which sentences are true in it—which is provided by a valuation.

When Γ is a �nite set that we (being somewhat sloppy) write as Γ = {A0, A1, ..., An−1}, we will usually
write A0, ..., An |= A (leaving out the set brackets). When Γ is the empty set, we just write |= A instead

of ∅ |= A.

�eorem 2.10. Let A be a w�. �en |= A i� A is a tautology.

23

Proof. �e le�-hand-side says that for all valuations V so that V∗(B) = 1 for all members B of ∅, it is the
case that V∗(A) = 1. But the empty set has no members, so trivially all valuations make all its members

true. �us what it says on the le�-hand-side is just that all valuations V are such that V∗(A) = 1. But that

is just the de�nition of a tautology.

We can push this result further to characterise consequences from �nite sets of premisses by tautologies.

�eorem 2.11. Let A and A0, ..., An−1 be w�s. �en A0, ..., An−1 |= A i� (
∧
i<nAi)→ A is a tautology.

Proof.

⇒ le�-to-right. Prove the contrapositive: if (
∧
i<nAi) → A is not a tautology, then A0, ..., An−1 6|= A.

Assume that (
∧
i<nAi)→ A is not a tautology, i.e. that for some valuation V , V∗((

∧
i<nAi)→ A) = 0.

Inspection of the Truth Table for→ shows that therefore V∗(A) = 0 and for all i < n, V∗(Ai) = 1 (very

formally, this is an induction on i). But this just means that there is a valuation that makes all the premisses

A0, ..., An−1 true, but the conclusion A false. So A0, ..., An−1 6|= A.

⇐ right-to-le�. Again prove the contrapositive: if A0, ..., An−1 6|= A, then (
∧
i<nAi)→ A is not a tautology.

So assume thatA0, ..., An−1 6|= A, i.e. that for some valuation V , for all i < n, V∗(Ai) = 1 and V∗(A) = 0.

Inspection of the Truth Table for ∧ shows that then also V∗((
∧
i<nAi)) = 1. But because V ∗ (A) = 0, it

follows by the Truth Table for→, that V∗(
∧
i<nAi)→ A) = 0. So (

∧
i<nAi)→ A is not a tautology.

�us, in principle, if we only ever have �nite premisses, we don’t strictly speaking need to de�ne ‘semantic

consequence’ and could instead just talk about certain conditionals being tautologies. We cannot, however,

push the strategy to in�nite sets of premisses. �is is because our language contains only �nite sentences,

so there are no in�nite conjunctions.

We will however later prove the compactness of |=. �at is:

�eorem 2.12. Let A be a w� and Γ be a set of w�s. �en Γ |= A i� there is a �nite subset Γ′ ⊆ Γ with

Γ′ |= A.

From this it follows that Γ |= A i� there is a �nite subset {A0, ..., An−1} ⊆ Γ such that (
∧
i<nAi) → A

is a tautology. �is is the most general case of characterising semantic consequence by tautology. Note

however that we cannot express ‘there is a �nite subset’ in the object language.

So when it comes to in�nite sets of premisses, the metalanguage is genuinely more powerful than the

object language: there is no object language sentence that is a tautology if and only if Γ |= A. So there is

something that we can ‘say’ in the object language (namely ‘Γ semantically entails A’) that we cannot say

in the object language. �is is a simple case of an observation that we will make time and again throughout

this course: in certain, subtle ways, the meta-language is more expressive than the object language.

24

Moreover, there is a di�erent notion we are already acquainted with that can help us give an alternative

characterisation of what semantic consequence is: satis�ability. �e notion of satis�ability straightfor-

wardly extends to sets of formulae.

De�nition 26. A set Γ of w�s is satis�able if there is a valuation V such that for all A ∈ Γ, V∗(A) = 1.

�en we can prove the following.

�eorem 2.13. Γ |= A i� Γ ∪ {¬A} is not satis�able.

Proof. ⇒ le�-to-right. We will prove the contrapositive: if Γ ∪ {¬A} is satis�able, then Γ 6|= A. So

assume that Γ ∪ {¬A} is satis�able. �en there is a valuation V such that for all B ∈ Γ, V∗(B) = 1

and V∗(¬A) = 1. �e la�er means that V∗(A) = 0. So V is a valuation for which it is not the case

that

⇐ right-to-le�. We will prove the contrapositive: if Γ 6|= A, then Γ ∪ {¬A} is satis�able. So assume

that Γ 6|= A. �en there is a valuation V such that for all B ∈ Γ, V∗(B) = 1 and V∗(A) = 0. �e

la�er means that V∗(¬A) = 1. So V is a valuation for that shows that Γ ∪ {¬A} is satis�able.

�is vindicates our intuitive characterisation of |= as ‘it cannot be the case that the premisses are all true

and the conclusion is false’.

2.6 �e Natural Deduction Calculus

We now turn to �nding a formal de�nition of syntactic consequence. Like the de�nition of semantic con-

sequence tries to capture our pre-formal understanding of truth in situations, the de�nition of syntactic

consequence should capture our pre-formal understanding of proof and argument form. We intend our

formal results about consequence relations to reveal something about the practice of using logic. �e task

of de�ning syntactic consequence is hence best understood as amodelling task: we are looking for a formal

model of what we are doing when we are proving things. We call such a model a calculus.

�e natural deduction calculus was developed by Gerhard Gentzen with the speci�c ambition to come as

close as possible to actual reasoning. It consists of inference rules that associate (possiblymultiple) premisses

with a single conclusion. �ese rules are intended to capture the smallest discernible steps that one can take

in a proof, so that chaining them together will allow us to phrase the complex mathematical arguments we

are becoming used to.

We will write inference rules in a two-dimensional notation in which the premisses are separated by a

vertical line from the conclusion. For example, the inference rule of modus ponens has two premisses and

can be wri�en as follows.

A→ B A
B

�is states that from A → B and A it is correct to infer B. Note that the intended reading of the modus

ponens rule is schematic. �e rule states that for arbitrary formulaeA andB, one may inferB fromA→ B

25

and A. �at is, the following are all concrete instances of this rule.

p→ q p
q

(p ∨ q)→ ¬r (p ∨ q)
¬r

¬p→ r ¬p
r

Note that all these instances are obtained from the modus ponens scheme by replacing A and B with con-

crete formulae. �e �rst example is obtained from the scheme by replacing A with p in both occurrences

of A; and replacing B with q, also in both occurrences of B. It is not necessary to replace A and B with

di�erent formulae, so the following is also an instance of the modus ponens scheme.

p→ p p
p

�e following however are not instances of modus ponens.

p→ q q
q

p→ r p ∧ p
r

¬p→ r ¬p
r ∨ q

�e �rst one is not an instance ofmodus ponens because the second premiss does not match the antecedent

of the conditional in the �rst premiss. �us it is not formed by replacing A in the modus ponens scheme

with a single concrete formula. It does not ma�er that you may have very good reason to think that q

entails q. Whether or not something is an instance of modus ponens is only and exclusively about whether

it has the right form.

�e second one likewise is not an instance ofmodus ponens because the second premiss does not match the

antecedent of the �rst premiss. Although we know that p and p ∧ p are equivalent in our semantics, this

plays no role here. Only form ma�ers. Similarly, the third one is not an instance of modus ponens because

its conclusion does not match the consequent of the conditional in the �rst premiss, so it is not formed by

replacing B in the modus ponens scheme with a single concrete formula.

We are now looking for further inference rules that tell us how to reason with the connectives. Some of

these rules are very simple. For example, the following rules obviously formalise appropriately how to

reason with conjunction.

A B
A ∧B

A ∧B
A

A ∧B
B

�is means that if you have A and B (separately), you are entitled to infer their conjunction A ∧B. Con-

versely, if have a conjunction A ∧B, you are entitled to infer A and also entitled to infer B.

With these rules and modus ponens we can already write down some small formal proofs. We form proofs

by chaining rules together, so that the premisses of one rule are the conclusions of another. For example,

we can show that from the set of premisses {p1∧p2, p1 → q, p2 → r} it follows that q∧ r. �e proof looks

as follows.

p1 ∧ p2
p1 p1 → q

q

p1 ∧ p2
p2 p2 → r

r
q ∧ r

26

Note that we have used the premiss p1 ∧ p2 twice. �is is permissible because we are always working with

sets of premisses and there is no fact of the ma�er “how o�en” a formula occurs in the set of premisses. It

only ma�ers that a formula is a member of the set of premisses—and if it is it can be used in a proof at any

point and arbitrarily o�en.

�isway of displaying a formal argument is commonly called a proof tree. Proof trees can get very confusing

when they grow larger, so it helps to indicate at every line which inference rule is instantiated in this step.

To do so, we will have to give our rules names. Which one we choose does not ma�er, but there are some

helpful conventions.

Note that the rules for conjunction serve particular functions towards particular goals. If you want to

reason towards a conjunction, the �rst rule tells you which premisses you need. �e second and third rules

for conjunction, however, tell you what you can get when you have a conjunction. Put di�erently, the �rst

rule tells you how to introduce a conjunction into a proof; the second and third tell you how to eliminate a

conjunction to get to its parts. So we will call the �rst the introduction rule for conjunction and the second

and third the elimination rules for conjunction.

A B
(∧I.)

A ∧B
A ∧B

(∧E.1) A
A ∧B

(∧E.2) B

Similarly,modus ponens can be thought of as the elimination rule for the conditional, as it also tells us how

to get from a complex formula whose main operator is a conditional to its parts. So this is what we will

call it.

A→ B A
(→E.)

B

With these labels in place, we can make our proof tree a lot more readable.

p1 ∧ p2
(∧E.1)p1 p1 → q

(→E.)q

p1 ∧ p2
(∧E.2)p2 p2 → r

(→E.)r
(∧I.)

q ∧ r

We can now see very clearly that this proof proceeds by �rst eliminating the conjunctions in the conjunctive

premiss to obtain the antecedent of the conditional premisses, which allows us to eliminate the conditionals

to get to their consequents. Finally, we introduce the conjunction of these consequents.

Now, if there is an elimination rule for the conditional, one would assume that there also is an introduction

rule. Indeed there is. It is the formalised version of a proof method we have been using all this time already:

Conditional Proof.

Conditional Proof

To prove a claim like if A, then B, assume that A is the case and prove from this assumption that B.

�is tells us how the formal inference rule for the introduction of a conditional should look like. To wit:

one is entitled to infer A→ B if one can prove B from the assumption A. We write this as follows.

27

[A]i
.
.
.

B
(→I.)

i

A→ B

�is notation is to be understood as follows. �e square brackets [] are used to mark formulae as assumed.

To keep track of our assumptions we label each with a di�erent natural number (an index i). �e dots say

that there is any proof tree between [A]i and B.

For example, we can now prove that (p ∧ q)→ r entails p→ (q → r).

[p]1 [q]2
(∧I.)

p ∧ q (p ∧ q)→ r
(→E.)r

(→I.)
2

(q → r)
(→I.)

1

p→ (q → r)

When we “use” an assumption to introduce a conditional, we mark its index in the step where we use (→I.).

�is is known as discharging the assumption.

A�er an assumption is discharged, it may not be used again. �e following is a wrong proof.

[p ∧ q]1
(∧E.1)p

(→I.)
1

(p ∧ q)→ p
[p ∧ q]1

(∧E.2)q

((p ∧ q)→ p) ∧ q

�is is not a proper proof tree because the assumption with index 1 is used again a�er it is discharged by

(→I.).

However, until an assumption is discharged it may be used arbitrarily o�en (like premisses). �is allows

us to prove the commutativity of conjunction.

[p ∧ q]1
(∧E.2)q

[p ∧ q]1
(∧E.1)p

(∧I.)
q ∧ p

(→I.)
1

(p ∧ q)→ (q ∧ p)

Finally, to discharge an assumption it is not necessary to have “used” it in any way. For example, we can

write a proof tree showing that p→ (q → p) as follows.

[p]1 [q]2
(→I.)

2

q → p
(→I.)

1

p→ (q → p))

�is is known as an empty discharge. Very technically speaking, this tree is not a correctly formed proof.

�is is because the rule (→I.) has above the line a single formula, but in this proof we have two formulae

above the line. �e problem is that [q] has to be somewhere above the line where we use (→I.) discharge

it, but we are not doing anything with it, so it just sits there uselessly.

28

Butwe canmake a correctly formed proofwhere there is a space for q by just “uselessly” using q to introduce

a conjunction and then immediately eliminate it again.

[p]1 [q]2
(∧I.)

p ∧ q
(∧E.1)p
(→I.)

2

q → p
(→I.)

1

p→ (q → p))

Finally, it is possible to make an assumption and immediately discharge it. For example, the following

proves p→ p.

[p]1
(→I.)

1

p→ p

Nowwe can �nd the rules for the rest of our connectives. An interesting case is the rule for the elimination

of disjunction, which formalises the proof method of proof by cases.

Proof by cases

If we know that we are in one of two cases, say A or B and want to prove C , it su�ces to show that A

entails C and B entails C.

Again, this is a proof method we have been already using extensively. We can now formalise it as the rule

for the elimination of disjunction.

A ∨B

[A]i
.
.
.

C

[B]j
.
.
.

C
(∨E.)i,j

C

�is is the formal version of the following sketch for an informal proof by cases.

We are in one of two cases:

• Case 1: A. In this case …. therefore C .

• Case 2: B. In this case …. therefore C .

�ere are no more cases (i.e. A or B is the case). �us C .

�e rules for the introduction of disjunction are as follows. �eir intuitive justi�cation is that when we

know that A is the case, we also know that we are in one of two cases: A or anything else.

A
(∨I.1) A ∨B

A
(∨I.2) B ∨A

Finally, we treat the Falsum symbol ⊥ as the formal analogue of writing “Contradiction”. �at is, Falsum

makes explicit that we have reached a logical dead-end. We can use this idea to write the rules for the

introduction and elimination of negation.

A ¬A
(¬E.) ⊥

[A]i
.
.
.

⊥
(¬I.)i ¬A

29

�e idea is that when we have a formula and its negation, we know we have reached a logical dead end.

We mark this by inferring ⊥. And if from the assumption that A we reach a logical dead end, we know

that A cannot be the case, so we infer ¬A.

We are still missing one important proof method: reductio.

Reductio Ad Absurdum

To prove A, assume that A is false and derive a contradiction.

Unfortunately, we cannot claim to have formalised reductio by the rule for the introduction of negations.

�at rule tells us that if from A we get a contradiction, we can infer ¬A. Using this rule we will never be

able to infer a non-negated formula. But in some reductio arguments this is just what we want. �us we

also need to add the following rule.

[¬A]i
.
.
.

⊥
(RAA)

i

A

One famous example for a proof that requires RAA is the derivation of the law of excluded middle. We can

show that p∨¬p by assuming ¬(p∨¬p) and deriving⊥. We need to be a li�le bit clever about it and play

with the rules for disjunction.

[p]1
(∨I.1)p ∨ ¬p [¬(p ∨ ¬p)]2

(¬E.)
⊥

(¬I.)1¬p
(∨I.2)p ∨ ¬p [¬(p ∨ ¬p)]2

(¬E.)
⊥

(RAA)
2

p ∨ ¬p

We now have everything we need to de�ne the syntactic consequence relation `. We want to say that

Γ ` A i� there is a proof tree that ends in A and has only members of Γ as premisses. To do so, we need

to de�ne the set of all proofs.

2.7 Syntactic Consequence

In principle, the set of trees containing well formed formulae at their nodes/leaves contains many trees that

are not proof trees. �e following is a tree, but not a proof tree, as it does not instantiate an inference rule.

p→ q r ∨ q
p0

So we need a de�nition to sort out the good trees from the bad trees. �e idea is the very same as when we

were de�ning thewell-formed formulae. Amongst all the possible words over an alphabet, we distinguished

the well-formed ones by a recursive de�nition. Now, amongst all the possible trees over the well formed

formulae, we want to distinguish the well-formed proofs (where each step instantiates an inference rule)

by a recursive de�nition.

30

�e plan is to de�ne the set of all proof trees by using the inference rules as recursive steps. We still need a

base case to start a recursion, but it is easy to come by. For every formula A, the following is a proof tree.

A

�is is the proof tree with conclusion A and premiss A.

For the formal de�nition of the set of proof trees, we will use some suggestive notation. We will use

variables D, D1, D2, … to denote �xed but arbitrary trees (D for derivation). For example, if D1 is a tree

with conclusionA andD2 is a tree with conclusionB, then the following is a tree (namely, the tree obtained

by continuing the derivations D1 and D2 with the rule for conjunction introduction).

D1 D2

A ∧B

Given a tree D, its premisses are all the leaves of the tree that are not surrounded by []. To make the

following de�nition a bit easier to read, we introduce the following suggestive notations:

D
A

denotes a tree with conclusion A.

A
D
B

denotes a tree with conclusion B that has A among its premisses (it may have more premisses).

[A]

D
B

denotes the tree that is obtained from

A
D
B

by replacing A with [A].

(Very technically: and [A] is assigned an index that is not yet used in D; we omit mentioning the

index in this notation.)

With this we can de�ne the set of proof trees.

De�nition 27 (Proof Trees). �e set of proof trees is de�ned by the following recursion.

Base: For every A ∈ wff, the one-element tree A is a proof tree.

∧I. If D1

A
and

D2

B
are proof trees, then

D1

A

D2

B
A ∧B

is a proof tree.

∧E. If D
A ∧B is a proof tree, then

D
A ∧B
A

and

D
A ∧B
B

are proof trees.

→I. If

A
D
B

is a proof tree, then

[A]

D
B

A→ B

is a proof tree.

31

→E. If
D1

A→ B
and

D2

A
are proof trees, then

D1

A→ B

D2

A
B

is a proof tree.

∨I. If D
A

is a proof tree and B is a formula, then

D
A

A ∨B
and

D
A

B ∨A
are proof trees.

∨E. If D1

A ∨B
,

A
D2

C

, and

B
D3

C

are proof trees, then
D1

A ∨B

[A]

D2

C

[B]

D3

C
C

is a proof tree.

¬I. If
A
D
⊥

is a proof tree, then

[A]

D
⊥
¬A

is a proof tree.

¬E. If D1

A
and

D2

¬A
are proof trees, then

D1

A

D2

¬A
⊥

is a proof tree.

RAA If

¬A
D
⊥

is a proof tree, then

[¬A]

D
⊥
A

is a proof tree.

�e set of proof trees is the set of correct formal proofs. �is su�ces to de�ne syntactic consequence.

De�nition 28. Let Γ be a set of w� and A be a w�. Γ ` A i�Def there is a proof tree
D
A

such that all its

premisses are members of Γ.

We use the same notational conventions as we used for semantic consequence. �at is, instead of ∅ ` A
we just write ` A and when Γ = {A0, ..., An−1} is �nite, we sometimes write A0, ..., An−1 ` A instead of

{A0, ..., An−1} ` A.

We can now also obtain a syntactic analogoue to our alternative characterisation of semantic consequence.

De�ne the following property of sets of premisses.

• A set of formulae Γ is called inconsistent i�Def Γ ` ⊥. If Γ is not inconsistent, it is consistent.

�en the following is the case.

�eorem 2.14. For all formulae A and sets of formulae Γ: Γ ` A i� Γ ∪ {¬A} is inconsistent.

Proof. Fix arbitrary A and Γ.

⇒ Le�-to-right: Assume that Γ ` A and show that Γ ∪ {¬A} is inconsistent. If Γ ` A there is a proof

tree as in (1) with premisses from Γ. But then (2) is a proof tree with premisses from Γ∪ {¬A}. �is

means that Γ ∪ {¬A} ` ⊥, i.e. Γ ∪ {¬A} is inconsistent.

32

(1)
D
A

(2)

D
A ¬A

(¬E)⊥
⇐ Right-to-le�: Assume that Γ ∪ {¬A} is inconsistent and show that Γ ` A. If Γ ∪ {¬A}, we may

distinguish two cases.

Case 1. ¬A is a premiss in the proof of ⊥ from Γ ∪ {¬A}. �en there is a proof tree as in (3) with

premisses from Γ ∪ {¬A} (only the premiss ¬A is made explicit). But then (4) is a proof tree

with premisses from Γ.

(3)

¬A
D
⊥

(4)

[¬A]1

D
⊥

(RAA)
1

A
Case 2. ¬A is not a premiss in the proof of ⊥ from Γ ∪ {¬A} (i.e. already Γ is inconsistent). �en

there is a proof tree D that ends in ⊥ with premisses from Γ. �is means we can construct the

following proof tree with premisses from Γ.

D
⊥ [¬A]1

(∧I.)
⊥ ∧ ¬A

(∧E.1)⊥
(RAA)

1

A
In either case, Γ ` A.

We also �nd syntactic analogoues to the semantic notions of a formula being a tautology and the corres-

ponding partial characterisation of semantic consequence.

• A formula A is called a theorem i�Def ` A.

�en the following is the case.

�eorem 2.15. Let A be a formula and {A0, ..., An−1} be a �nite set of formulae. �en it is the case that:

A0, ..., An−1 ` A i� (
∧
i<nAi)→ A is a theorem.

Proof. We show this by induction on n.

• Base. n = 1. Le�-to-right: Assume A0 ` A. �is means there is a proof tree as in (1) with no

premisses except A0. By the recursive step for (→I.) in De�nition 27, this means that (2) is a proof

tree. Note that (2) has no premisses, so by de�nition, ` A0 → A.

(1)

A0

D
A

(2)

[A0]

D
A

A0 → A

Right-to-le�: Assume A0 → A is a theorem. �is means there is a proof tree as in (3) with no

premisses. By the base step in the de�nition of proof trees, (4) is a proof tree. �us by the recursive

step for (→E.) in De�nition 27, (5) is a proof tree. Its only premiss is A0, so it shows that A0 ` A.

(3)
D

A0 → A
(4) A0 (5)

D
A0 → A A0

A

33

• Inductive step. Induction hypothesis: Assume that for a �xed but arbitrary n it is the case that for all

formulaeA and sets of formulae with nmembers {A0, ..., An−1}, it is the case thatA0, ..., An−1 ` A
i� (
∧
i<nAi)→ A is a theorem.

It is to show that for all formulae B and sets of formulae with n+ 1 members {B0, ..., Bn−1, Bn}, it
is the case that B0, ..., Bn−1, Bn ` B i� (

∧
i<n+1Bi)→ B is a theorem.

– Le�-to-right: FixB and {B0,, Bn−1, Bn} and assume thatB0, ..., Bn−1, Bn ` B. Show that

(
∧
i<n+1Bi)→ B is a theorem.

By (→I.), B0, ..., Bn−1, Bn ` B entails that B0, ..., Bn−1 ` Bn → B. We can apply the

induction hypothesis to conclude that (
∧
i<nBi)→ (Bn → B) is a theorem.

Note that we phrased the IH for all A, so A in the IH need not be the same as our B
here and the Ai need not be our Bi. In particular, we use the IH for A = Bn → B.

Now, (
∧
i<nBi)→ (Bn → B) being a theoremmeans that there is a proof tree as the following

with no premisses.

D
(
∧
i<nBi)→ (Bn → B)

�is means that the following is a proof tree with no premisses.

D
(
∧
i<nBi)→ (Bn → B)

[(
∧
i<nBi) ∧Bn)]1

(∧E.1)∧
i<nBi

(→E.)

Bn → B

[(
∧
i<nBi) ∧Bn)]1

(∧E.2)
Bn

(→E.)

B
(→I.)

1

(
∧
i<nBi ∧Bn)→ B

But (
∧
i<nBi ∧Bn) =

∧
i<n+1Bi. So this shows that ` (

∧
i<n+1Bi)→ B. �is was to show.

– Right-to-le�: Fix B and {B0,, Bn−1, Bn} and assume that (
∧
i<n+1Bi)→ B is a theorem.

It is to show that B0, ..., Bn−1, Bn ` B.

We now use a trick to �nd something to apply the IH to: let C0 = B0 ∧ B1 and for all i with

0 < i < n, let Ci = Bi+1. Note that

∧
i<n+1Bi =

∧
i<nCi (literally, it is the exact same

formula). �us we have that (
∧
i<nCi)→ B is a theorem by assumption.

By our IH, it follows that C0, ..., Cn−1 ` B. �is means that B0 ∧ B1, B2, ..., Bn ` B. Using

(∧E.) we can re-write the proof tree to a proof tree showing that B0, B1, B2, ..., Bn ` B. �is

was to show.

�is concludes the induction.

For syntactic consequence, we can immediately prove compactness.

�eorem 2.16 (Syntactic Compactness). Γ ` A i� there is a �nite subset Γ′ ⊆ Γ with Γ′ ` A.

34

Proof. Every proof tree can only have �nitely many premisses. �us if Γ ` A, then let Γ′ be the premisses

occurring in the proof tree showing that Γ ` A. By de�nition, by the very same proof tree, Γ′ ` A and by

construction Γ′ is �nite.

Conversely, if there is a �niteΓ′ ⊆ ΓwithΓ′ ` A then there is a proof tree with conclusionA and premisses

from Γ′. �is is also a proof tree with conclusion A and premisses from Γ.

But again, we cannot express ‘there is a �nite subset of the premisses’ in the object language, so there is

no single formula whose theoremhood is equivalent to Γ ` A if Γ may be in�nite.

2.8 Derived Rules

�ere are a few proof methods that we have not yet captured in our calculus. For example:

Proof by Contraposition

To prove that if A, then B, prove that if B is false, then A is false.

�is could be expressed in the following inference rule.

¬B → ¬A
(Contraposition)

A→ B

It is not necessary to add such a rule to our calculus, because we can derive it. First consider how to prove

Contraposition for a concrete formula. �e following proof shows that ¬q → ¬p entails p→ q.

¬q → ¬p [¬q]2
(→E.)¬p [p]1

(¬E.)
⊥

(RAA)
2

q
(→I)

1

p→ q

But this is not quite what we wanted: the rule of (Contraposition) is supposed to be schematic. But recall

that all our proof rules were schematic as well. �us if we replace p with any A and q with any B in the

above proof, we still have a valid proof tree. �at is, because all proof rules are schematic, proofs
themselves are schematic. �us, the above proof tree su�ces to show that it is always correct to use

the rule (Contraposition) in a proof. We call (Contraposition) a derived rule because we can derive its

correctness from the basic proof rules.

�e other direction of contraposition is sometimes useful as well.

A→ B
(Contraposition

′
) ¬B → ¬A

�e proof is very similar to the one above, but uses (¬I.) instead of (RAA).

q → p [q]2
(→E.)p [¬p]1

(¬E.)
⊥

(¬I)2¬q
(→I)

1

¬p→ ¬q

35

Some further useful derived rules are double-negation elimination (DNE) and introduction (DNI).

¬¬A
(DNE)

A
A

(DNI) ¬¬A

�e proofs are as follows:

[¬A]1 ¬¬A
(¬E.)

⊥
(RAA)

1

A

A [¬A]1
(¬E.)

⊥
(¬I)1¬¬A

Note that only the rules for negation are requires to derive the converse of contraposition and the double-

negation introduction rule. But for Contrapositoin and double-negation elimination we require Reductio

ad Absurdum. To the intuitionist logician, all of RAA, Contraposition and DNE are suspect.

We can now also see that the Natural Deduction calculus has more connectives than it needs. For example,

we could remove the rules for ∨ and instead treat A∨B as an abbreviation of ¬(¬A∧¬B). To show that

we did not need ∨, we need to derive the rules for disjunction. �at is, in the calculus without disjunction,

we need to derive the following.

A
(∨I.1*) ¬(¬A ∧ ¬B)

A
(∨I.2*) ¬(¬B ∧ ¬A)

¬(¬A ∧ ¬B)

[A]i
.
.
.

C

[B]j
.
.
.

C
(∨E.*)i,j

C

Proof that the Introduction rules are derivable; this is the proof for (∨I.1*), as (∨I.2*) is analogous.

A

[¬A ∧ ¬B]1
(∧E1)¬A

(¬E)
⊥

(¬I)1¬(¬A ∧ ¬B)

�e derivation of (∨E.*) is as follows.

¬(¬A ∧ ¬B)

[A]i
.
.
.

C
(→I)

i

A→ C
(Contraposition

′
)¬C → ¬A [¬C]1

(→E.)¬A

[B]j
.
.
.

C
(→I)

j

B → C
(Contraposition

′
)¬C → ¬B [¬C]1

(→E.)¬B
(∧I.)¬A ∧ ¬B

(¬E.)
⊥

(RAA)
1

C

It is usually the case that if you have a propositional basis, then the Natural Deduction rules for the con-

nectives in the basis allow you to prove the rules for the abbreviated connectives as derived rules. But

this depends on how exactly the rules are phrased—and in any case, needs to be proved for every basis.

For example, since we have here de�ned ¬ by using ⊥, we cannot use the basis {¬,∨,∧}, but require
{¬,∨,∧,⊥}. It is, however, possible to phrase rules for negation without ⊥.

We will now turn to discussing a di�erent calculus in which we can use a very small set of rules and

connectives.

36

2.9 �e Hilbert Calculus

�e Natural Deduction calculus might succeed in formalising our ‘natural’ proof methods, but the proof

trees it produces do not look very natural. Perhaps one would prefer proofs just to be sequences of formulae

(like natural proofs appear to be). We can have this when we use the Hilbert calculus instead of the Natural

Deduction one.

�e idea behind the Hilbert calculus is that we only have one fundamental inference rule: modus ponens.

A→ B A
Modus Ponens

B

�is single inference rule is supplemented with a number of logical axioms, which are schemata for for-

mulae. �e following are Frege’s axioms for the propositional calculus. (Some of these are redundant. For

example, F3 follows from the others, and if we were to replace F4 with its converse, we could derive F5 and

F6.)

F1 A→ (B → A).

F2 (A→ (B → C))→ ((A→ B)→ (A→ C)).

F3 (A→ (B → C))→ (B → (A→ C)).

F4 (A→ B)→ (¬B → ¬A).

F5 ¬¬A→ A.

F6 A→ ¬¬A.

And this is it. It has become a bit of a sport among logicians to �nd the smallest sets of logical axioms for

the propositional calculus (single-axiom systems are known, but are very annoying to use).

We can now de�ne syntactic consequence as follows.

De�nition 29. Γ `H A i� there is an ordered set 〈A0, ..., An〉 such that An = A and for every i ≤ n one

of the following is the case:

• Ai is an instance of a logical axiom.

• Ai is a member of Γ.

• �ere are j < i and k < i such that

Aj Ak
Ai

is an instance of Modus Ponens.

Because {¬,→} is a propositional base (exercise), we can treat ∧, ∨ and ⊥ as abbreviations to obtain a

syntactic consequence relation for our full language.

�e Hilbert calculus has some advantages. It is typically easier to de�ne the behaviour of a new logical

operator in terms of axioms than it is to de�ne it in terms of rules for its Introduction and Elimination. �is

is why modal logics are typically stated in terms of Hilbert calculi.

In addition, because it is very minimal, it is easier to prove things about the Hilbert calculus (as we will

see). But proving things within the Hilbert calculus is much harder—and indeed, less natural—than in the

37

Natural Deduction calculus. To even get started proving things, it is very useful to establish some derived

rules. �e following is the hypothetical syllogism.

A→ B B → C
(HS)

A→ C

As an example, we will prove that this is a derived rule here. To show this, �rst show that `H (q → r)→
((p→ q)→ (p→ r)). �is is established by the following sequence of formulae.

1. (p→ (q → r))→ ((p→ q)→ (p→ r)) Instance of F2

2. ((p→ (q → r))→ ((p→ q)→ (p→ r))) Instance of F1

→ ((q → r)→ ((p→ (q → r))→ ((p→ q)→ (p→ r))))

3. (q → r)→ ((p→ (q → r))→ ((p→ q)→ (p→ r))) Modus Ponens 1,2

4. ((q → r)→ ((p→ (q → r))→ ((p→ q)→ (p→ r)))) Instance of F2

→ (((q → r)→ (p→ (q → r)))→ ((q → r)→ ((p→ q)→ (p→ r))))

5. ((q → r)→ (p→ (q → r)))→ ((q → r)→ ((p→ q)→ (p→ r))) Modus Ponens 3, 4

6. (q → r)→ (p→ (q → r)) Instance of F1

7. (q → r)→ ((p→ q)→ (q → r)) Modus Ponens 5,6.

�is establishes `H (q → r) → ((p → q) → (p → r)). �e derived rule (HS) then follows from two

applications of Modus Ponens. To wit, we can write the following schema for a proof that shows that for

all A, B and C , it is the case that A→ B,B → C `H A→ C .

1. (B → C)→ ((A→ B)→ (A→ C)) by the proof above

2. A→ B premiss

3. B → C premiss

4. (A→ B)→ (A→ C) Modus Ponens, 1,3

5. A→ C Modus Ponens, 2,4

�e following is arguably the most important result about the Hilbert calculus. It will make our lives a lot

easier.

�eorem 2.17 (Deduction�eorem). LetA andB be formulae and Γ be a set of formulae. If Γ∪{A} `H B,

then Γ ` A→ B.

Proof. We prove this by induction on the length n on the proof of B from Γ ∪ {A}.

• Base case: n = 1. Recall that a proof of B in the Hilbert calculus is an ordered set of formulae where

the last entry is B. So a proof of B that has length 1 is 〈B〉. �is means that B must be a member of

Γ ∪ {A} or B is an instance of a logical axiom. �us there are three cases:

– Case 1: B = A. �en we need to show that Γ ` A→ A. �is follows from an exercise.

– Case 2: B ∈ Γ. �e following proof shows Γ ` A→ B.

38

1. B → (A→ B) Instance of F2.

2. B Member of Γ

3. A→ B Modus Ponens 1,2

– Case 3: B is a logical axiom. �e following proof shows Γ ` A→ B.

1. B → (A→ B) Instance of F2.

2. B Instance of a logical axiom

3. A→ B Modus Ponens 1,2

• Inductive step. Let n be �xed but arbitrary and assume the induction hypothesis: for all Γ, A and B

such that Γ ∪ {A} `H B by a proof of length n or less, Γ `H A→ B. Show that for all Γ, A and B

be such that Γ ∪ {A} `H B by a proof of length n+ 1 or less, Γ `H A→ B.

So let Γ, A and B be such that Γ∪ {A} `H B by a proof of length n+ 1 or less. We can distinguish

two cases:

– Case 1. B = A or B ∈ Γ or B is a logical axiom. �en proceed as in the base case.

– Case 2. B follows from an application of Modus Ponens. �is means that before B in the proof

there are formulae C and C → B. �e proofs of C and C → B have length n or shorter, so we

can apply the induction hypothesis. Hence Γ ` A→ C and Γ ` A→ (C → B).

Note that the following is an instance of F2: (A → (C → B)) → ((A → C) → (A → B))).

We can construct a proof showing that Γ ` A→ B as follows.

1. [copy of the proof that Γ ` A→ (C → B)]

2. (A→ (C → B))→ ((A→ C)→ (A→ B)) Instance of F2

3. (A→ C)→ (A→ B) Modus Ponens 1,2

4. [copy of the proof that Γ ` A→ C]

5. A→ B Modus Ponens 4,5

Very technically, this can also be put as follows: from the induction hypothesis, we know that

there is a proof P1 (i.e. an ordered set of formulae) whose last entry is A→ (C → B) and that

there is a proof P2 whose last entry is A→ C . Both P1 and P2 contain only premisses from Γ.

�en the following ordered set of formulae is a proof of A→ B from Γ:

Pa1 〈(A→ (C → B)→ ((A→ C)→ (A→ B))〉a〈(A→ C)→ (A→ B)〉aPa2 〈A→ B〉.

�us Γ ` A→ B.

�is concludes the induction.

�e proof of the Deduction �eorem showcases how easy it is to show things about the Hilbert calculus.

If we need to do a case distinction on steps in proofs, there are only three options. Usually the �rst two

(member of the premisses or logical axioms) are easily dealt with, so we only need to prove things about

Modus Ponens. �at keeps these proofs very straightforward.

39

We can give now the following proof (in the meta-language) that `H (q → r) → ((p → q) → (p → r))

without explicitly constructing an object-language argument (as we did above).

• First show that q → r, p→ q, p `H r.

1. p→ q Premiss

2. p Premiss

3. q Modus Ponens 1,2

4. q → r Premiss

5. r Modus Ponens 3,4

• By Deduction, q → r, p→ q `H p→ r

• By Deduction, q → r,`H (p→ q)→ (p→ r)

• By Deduction, `H (q → r)→ ((p→ q)→ (p→ r))

�us, the Deduction theorem allows us to prove that the Hilbert calculus proves certain things without

stating an explicit formal proof. �is is why the Deduction theorem is sometimes called a metatheorem: it

is a meta-language result about which proofs are possible in the object language.

Here is another useful result (a version of the Explosion rule).

�eorem 2.18 (Explosion). A `H ¬A→ B

Proof. �e formal proof is as follows.

1. A→ (¬B → A) Instance of F1

2. A Premiss

3. ¬B → A Modus Ponens 1,2

4. (¬B → A)→ (¬A→ ¬¬B) Instance of F4

5. ¬A→ ¬¬B Modus Ponens 3,4

6. ¬¬B → B Instance of F6

7. ¬A→ B Hypothetical Syllogism, 5,6

From this, we can obtain a rather weak version of Negation Introduction in the Hilbert calculus.

�eorem 2.19. `H (A→ ¬A)→ ¬A.

Proof. Show (A→ ¬A) `H ¬A and apply the Deduction theorem.

40

1. A→ (¬A→ ¬(A→ A)) Previous theorem

2. (A→ (¬A→ ¬(A→ A)))→ ((A→ ¬A)→ (A→ ¬(A→ A))) Instance of F2

3. (A→ ¬A)→ (A→ ¬(A→ A)) Modus Ponens 1,2

4. (A→ ¬A) Premiss

5. A→ ¬(A→ A) Modus Ponens 3,4

6. (A→ ¬(A→ A))→ (¬¬(A→ A)→ ¬A) Instance of F4

7. ¬¬(A→ A)→ ¬A Modus Ponens 5,6

8. (A→ A)→ ¬¬(A→ A) Instance of F6

9. A→ A from a previous result

10. ¬¬(A→ A) Modus Ponens 8,9

11. ¬A Modus Ponens 7,10

From this we get a proper version of the Negation Introduction rule.

�eorem 2.20. `H (A→ B)→ ((A→ ¬B)→ ¬A)).

Proof. �e following proof shows that A→ B,A→ ¬B `H ¬A. �en apply the Deduction theorem.

1. (A→ ¬B)→ (¬¬B → ¬A) Instance of F4

2. A→ ¬B Premiss

3. ¬¬B → ¬A Modus Ponens 1,2

4. B → ¬¬B Instance of F6

5. B → ¬A Hypothetical Syllogism 3,4

6. A→ B Premiss

7. A→ ¬A Hypothetical Syllogism 5,6

8. ¬A by the previous th.

2.10 Soundness

We want to show now that whenever Γ ` A, then also Γ |= A. We �rst make the Natural Deduction

calculus a bit more like the Hilbert calculus, so that we have to deal with fewer proof rules. Let⊥, ∧ and ∨
as abbreviations in the usual way. �at is,A∧B abbreviates ¬(A→ ¬B),A∨B abbreviates ¬(¬A∧¬B)

and ⊥ abbreviates p ∧ ¬p.

�eorem 2.21. �e following rules su�ce to derive all other rules of Natural Deduction.

[A]i
.
.
.

B
(→I.)

i

A→ B
A→ B A

(→E.)

B
A→ B A→ ¬B

(NI) ¬A
¬¬A

(DNE)

A
A B

(E)

A

Proof. Begin with the rules for conjunction. �e following proof tree shows that (∧I.) is derivable.

41

[A→ ¬B]1 A
(→E.)¬B
(→I.)

1

(A→ ¬B)→ ¬B

B [A→ ¬B]2
(E)

B
(→I.)

2

(A→ ¬B)→ B
(NI)

¬(A→ ¬B)

�e following proof tree shows that (∧E.1) is derivable.

¬(A→ ¬B) [¬A]1
(E)

¬(A→ ¬B)
(→I.)

1

¬A→ ¬(A→ ¬B)

[¬A]2 [B]3
(E)¬A

(→I.)
3

B → ¬A

[A]4 [B]5
(E)

A
(→I.)

5

B → A
(NI)¬B

(→I.)
4

A→ ¬B
(→I.)

2

¬A→ (A→ ¬B)
(NI)¬¬A

(DNE)

A

�e next one shows the derivation of (∧E.2).

¬(A→ ¬B) [¬B]1
(E)

¬(A→ ¬B)
(→I.)

1

¬B → ¬(A→ ¬B)

[¬B]2 [A]3
(E)¬B

(→I.)
3

A→ ¬B
(→I.)

2

¬B → (A→ ¬B)
(NI)¬¬B

(DNE)

B

�e next proof trees show the derivability of (¬I.) and (¬E.).

[A]1
.
.
.

⊥
(∧E.1)p

(→I.)
1

A→ p

[A]2
.
.
.

⊥
(∧E.2)¬p

(→I.)
1

A→ ¬p
(NI)¬A

A [¬⊥]1
(E)

A
(→I.)

1

¬⊥ → A

¬A [¬⊥]2
(E)¬A
(→I.)

2

¬⊥ → ¬A
(NI)

¬¬⊥
(DNE)

⊥

Finally, we derive (RAA) in the following proof tree.

[¬A]1
.
.
.

⊥
(∧E.1)p

(→I.)
1

¬A→ p

[¬A]2
.
.
.

⊥
(∧E.2)¬p

(→I.)
1

¬A→ ¬p
(NI)¬¬A

(DNE)

A

�e rules for→ need not be derived and we have already seen above how to derive the rules for ∨.

42

We will use this reduced calculus to prove things about Natural Deduction. We now have a smaller, more

Hilbert-like version of Natural Deduction for these purposes, and our old, large version of Natural Deduc-

tion to prove things in the proof theory nicely. We will now just talk about the Natural Deduction calculus

and sometimes mean either one of these versions, whichever is more convenient for the task at hand.

�e next useful thing we can do is de�ne the length of a Natural Deduction proof (intuitively, this is the

number of steps in a proof).

De�nition 30. �e length len(D) of a proof tree D is de�ned by the following recursion.

• Base: if D is a proof tree consisting of a single formula, then len(D) = 1.

• Recursive steps:

– If len(
A
D
B

) = n, then de�ne len(

[A]

D
B

A→ B

) = n+ 1.

– If len(
D1

A→ B
) = n and len(

D2

A
) = m, then de�ne len(

D1

A→ B

D2

A
B

) = n+m+ 1.

– If len(
D1

A→ B
) = n and len(

D2

A→ ¬B
) = m, then len(

D1

A→ B

D2

A→ ¬B
¬A

) = n+m+ 1.

– If len(
D
¬¬A) = n then de�ne len(

D
¬¬A
A

) = n+ 1.

– If len(
D1

A
) = n and len(

D2

B
) = m, then len(

D1

A

D2

B
A

) = n+m+ 1.

Now we can (surprisingly straightforwardly) prove that the Hilbert calculus is equivalent to the Natural

Deduction calculus (when, in the Hilbert calculus, we treat connectives other than ¬ and → as abbrevi-

ations).

�eorem 2.22. For all sets of formulae Γ and formulae A, Γ `H A i� Γ ` A.

Proof. In the Hilbert calculus, we treat the connectives other than→ and ¬ as abbreviations. �e proof is

only given as a sketch, as the details are easy to work out.

⇒ Le�-to-right. Because Natural Deduction also contains Modus Ponens, it su�ces to show that all

logical axioms of the Hilbert calculus are theorems of the Natural Deduction calculus. For F4, F5 and

F6, we have shown this already and F1, F2 and F3 are straightforward applications of the (→I.) rule.

⇐ Right-to-le�. Show by induction on the length of proof trees that wheneverΓ ` A, then alsoΓ `H A.

– Base: Suppose that Γ ` A by a proof tree of length 1. �en A is a member of Γ. But the proof

consisting of just A premiss is also a proof in the Hilbert calculus for Γ `H A.

– Inductive step. IH: Assume that for a �xed but arbitrary n it is the case that for all Γ and A, if

Γ ` A with a proof tree of length n or less, then also Γ `H A.

43

It is to show that for all Γ and A where Γ ` A by a proof tree of length n+ 1 it is the case that

Γ `H A. So let Γ andA be arbitrary such thatA follows from Γ by a proof tree of length n+ 1.

We can do a case distinction on the last step in the proof of A.

∗ If the last step is (→I.), then A = B → C for some formulae B and C and there is a proof tree

showing that Γ ∪ {B} ` C . �is proof tree has length n, so by the IH, Γ ∪ {B} `H C . So by

the Deduction theorem, Γ `H B → C .

∗ If the last step is (→E.), then there are proof trees showing that for some B, Γ ` B → A and

Γ ` B. Both are shorter than the proof of A, so by the IH Γ `H B → A and Γ `H B. So by

Modus Ponens in the Hilbert calculus, Γ `H A.

∗ If the last step is (E), there is nothing to show; if it is (DNE) proceed as in the (→I.) case; if it is

(NI) use �eorem 2.20 and proceed as in the (→I.) case.

�is concludes the induction.

In this proof, we could have used an induction on the construction of proof trees instead of an induction

on the length of proofs. �is would look almost the same, except that we would need to write separate

induction hypotheses for every inference rule. �e de�nition of the length of a proof allows us to cover

all the inference rules in a single inductive step. In almost all cases, induction on length is simply a more

concise way to write down induction on the construction of proofs.

We now use the same technique to prove the Soundness of the Natural Deduction calculus (and hence also

of the Hilbert calculus).

�eorem 2.23 (Soundness of the Propositional Calculus). For all sets of formulae Γ and formulae A, if

Γ ` A, then Γ |= A.

Proof. Show by induction on the length of proof trees that whenever Γ ` A, then also Γ |= A.

• Base: Suppose that Γ ` A by a proof tree of length 1. �en A is a member of Γ. �en it is trivially

the case that for all valuations V , if all members of Γ are true given V then also A is true given V .

• Inductive step. IH: Assume that for a �xed but arbitrary n it is the case that for all Γ and A, if Γ ` A
with a proof tree of length n or less, then also Γ |= A.

It is to show that for all Γ and A where Γ ` A by a proof tree of length n + 1 it is the case that

Γ |= A. So let Γ and A be arbitrary such that A follows from Γ by a proof tree of length n + 1. We

can do a case distinction on the last step in the proof of A.

– If the last step is (→E.), then there are proof trees showing that for some B, Γ ` B → A and Γ ` B.

Both are shorter than the proof ofA, so by the IH Γ |= B → A and Γ |= B. We can read o� the Truth

Table for→ that all valuations that make B and B → A true also make A true. Hence all valuations

that make all members of Γ true, make B and B → A true, so make A true. Hence Γ |= A.

– If the last step is (NI), then for some C , A = ¬C and there are proof trees showing that for some B,

Γ ` C → B and Γ ` C → ¬B. Both are shorter than the proof of A, so by the IH Γ |= C → B

44

and Γ |= C → ¬B. We can read o� the Truth Table for→ that all valuations that make C → B and

C → ¬B true must make C false, so A true. Hence Γ |= A.

– If the last step is (DNE), then Γ ` ¬¬A by a proof tree of length n, so by the IH Γ |= ¬¬A. As we
had shown ¬¬A ≈ A, it follows that Γ |= A.

– If the last step is (E), then there are proof trees showing that for some B, Γ ` A and Γ ` B. Both are

shorter than the proof of A we are considering in this step, so by the IH Γ |= A.

– If the last step is (→I.), then A = B → C for some formulae B and C and there is a proof tree of

length n showing that Γ∪{B} ` C . By the IH, Γ∪{B} |= C . Towards a reductio, assume that there

is a valuation V that makes all members of Γ true, but V∗(B → C) = 0.

By the Truth Table for→, it follows that V∗(B) = 1 and V∗(C) = 0. But this means that V makes

all members of Γ ∪ {B} true and C false. �is contradicts Γ ∪ {B} |= C . By reductio, Γ |= B → C .

�is concludes the induction.

Our reduction of the Natural Deduction calculus hasmade this proof pleasingly short. But it is instructive to

consider how the proof would go for the full calculus. For example, the case for the disjunction elimination

rule would go as follows.

• If the last step is (∨E.), then there are formulae B and C such that Γ ` B ∨C and Γ∪ {B} ` A and

Γ∪ {C} ` A, all by by proof trees shorter than n+ 1, it follows that Γ |= B ∨C , Γ∪ {B} |= A and

Γ ∪ {C} |= A.

By the Truth Table for ∨ and because Γ |= B ∨ C , it follows that V∗(B) = 1 or V∗(C) = 1. If the

former, then V makes all members of Γ∪ {B} true, so it makes A true because Γ∪ {B} |= A. If the

la�er, then V makes all members of Γ∪ {C} true, so it makes A true because Γ∪ {C} |= A. �us if

V makes all members of Γ true, it makes A true.

Note that in this proof we appeal to the meta-language proof method of Proof by Cases, which is exactly

the proof method that is formalised in the inference rule whose Soundness we are proving here. �is

means that we have now established that our formalisations of our proof methods preserve truth (for our

formalisation of truth)—but we have used the informal versions of these methods to show this.

�is is not by accident: we had set up the Truth Tables to capture our natural use and we had set up the

inference rules to capture our natural proof techniques. In a sense, the Soundness proof establishes no

more than we have not made any mistakes in doing so. So, if you had worries about whether the proof

methods we use in our natural mathematical proofs are valid (i.e. preserving truth), the Soundness result

can do li�le to assuage your worries.

But then, why prove Soundness? One reason why it is useful to have a Soundness result is that it allows

you to prove in a straightforward way that certain things are not provable from premisses.

�eorem 2.24. Let Γ be a set of formulae and A be a formula. If there is a valuation V such that V∗(A) = 0

and for all B ∈ Γ, V∗(B) = 1, then Γ 6` A.

45

Proof. Let Γ, A and V be arbitrary such that V∗(A) = 0 and for all B ∈ Γ, V∗(B) = 1. �en V∗(¬A) = 1

by the Truth Table for negation. �us all members of Γ∪{¬A} are true given V . So Γ∪{¬A} is satis�able.

By the contrapositive of �eorem 2.13, this means that Γ 6|= A. By the contrapositive of Soundness, this

means that Γ 6` A.

We can galvanise this result in a proof method for proving nonprovability.

Proving Nonprovability by Soundness

Given premisses Γ and a formula A, to show that A is not provable from Γ, it su�ces to show that there is

a valuation V such that V∗(A) = 0 and for all B ∈ Γ, V∗(B) = 1.

Note how powerful this method is: the claim that Γ 6` A is a universal claim: it says that there is no proof of

A from Γ (equivalently, that all proofs with premisses from Γ do not have A as a conclusion). So to check

this, one would need to check all proofs. But when applying the Soundness method, we have to check an

existential claim: we only have to provide a single counterexample in form of a valuation. �is is much

easier in general.

Example. One commits the fallacy of a�rming the consequent when one reasons from if p, then q and q

to p. Using Soundness, we can prove that this is indeed a fallacy. Let V be a valuation with V(p) = 0 and

V = 1. �en V∗(p→ q) = 1 and V∗(q) = 1, but V∗(p) = 0. �us, p is not provable from q and p→ q.

Note that we now have a very useful asymmetry between syntactic and semantic consequence. To show

that Γ |= A is a universal claim over all valuations (di�cult to check), but with Soundness we only need to

show that Γ ` Awhich is an existential claim over proofs (easy to check). Conversely, Γ 6` A is a universal

claim over all proofs (di�cult), but Γ 6|= A is an existential claim over valuations (easy). Soundness allows

us in both cases to pick the easy claim and derive the di�cult one.

2.11 Completeness

Note that Soundness only establishes that if we show Γ ` A, then it is also the case that Γ |= A, but not

that whenever Γ |= A is the case, there must be a proof of A. �at is, we have not yet ruled out that we

could �nd ourselves in a situation where Γ |= A, but Γ 6` A. So there may still be semantic consequences

(di�cult to check) that we cannot establish by a formal proof (easy to check). �e Completeness theorem

shows that this cannot be the case.

�eorem 2.25 (Completeness of the Propositional Calculus). For all sets of formulae Γ and formulae A, if

Γ |= A, then Γ ` A.

Before going into the proof, note that Completeness has a very di�erent status than Soundness. In our

mathematical theorising before formalising logic, we tacitly assume that our proof methods preserve truth.

Without this assumption, mathematics couldn’t even begin to happen. �e Soundness result is merely the

translation of this assumption to the formal level. We have no tacit assumption of Completeness: nothing

about our mathematical practice would require us to accept that all semantic consequences of our assump-

tions could be proven. �us, Completeness is a result that is a genuine meta-logical insight. Assuming

46

that our formalisations of truth and proof are faithful to our semi-formal practice, the Completeness result

allows us to infer that all semantic consequences of assumptions we make in mathematics can be demon-

strated by mathematical proof.

To establish Completeness, we will show the Satis�ability �eorem in propositional logic.

�eorem 2.26 (Satis�ability �eorem). If Γ is a consistent set of formulae, then Γ is satis�able. (�at is: if

Γ 6` ⊥, then there is a valuation V such that V∗(B) for all B ∈ Γ.)

First note why this su�ces to show completeness.

Proof of Completeness from Satis�ability. Towards a reductio assume that there is a set Γ and formula A

such that Γ |= A and Γ 6` A.

Recall �eorem 2.14: Γ ` A i� Γ ∪ {¬A} is inconsistent.

By the contrapositive of �eorem 2.14, Γ 6` A entails that Γ ∪ {¬A} is consistent. By the Satis�ability

�eorem, it follows that Γ ∪ {¬A} is satis�able. �is means there is a valuation V with V∗(A) = 0 and

for all B ∈ Γ, V∗(B) = 1. �us Γ 6|= A by de�nition of semantic consequence. Contradiction to our

assumption that Γ |= A.

�us there are no Γ and A with Γ |= A and Γ 6` A. Hence for all Γ and A, if Γ |= A, then also Γ ` A.

But to show the Satis�ability theorem we will need a li�le bit more Set �eory.

De�nition 31. A set s is called countable if there is a function f : s → N such that for all x ∈ s and
y ∈ s, if x 6= y then f(x) 6= f(y) (i.e. no two elements of s are mapped to the same number). If s is in�nite

and countable, it is countably in�nite.

Clearly, all subsets of the natural numbers are countable (the even numbers, the odd numbers, the prime

numbers…). But also intuitively ‘larger’ sets are countable.

Example. �e integers Z (the natural numbers and their negatives) are countable. �is is shown by this

function:

f(z) =


2 · z, if z > 0

−2 · z − 1, if z < 0

0, if z = 0

All positive numbers are mapped to even numbers and all negative numbers are mapped to odd numbers,

so there is no overlap.

Clearly, if a setX is countable and Y ⊆ X is countable, then Y is countable. �is is because if f : X → N
is a function showing thatX is countable, then the same function restricted to Y shows that Y is countable.

�e following alternative characterisation of countability is sometimes more useful.

47

�eorem 2.27. A set s is countable i� s = ∅ or there is a function g : N→ s such that for each x ∈ s there
is a n ∈ N such that g(n) = x.

Proof. Le�-to-right. Let s be arbitrary and assume there is a function f : s → N such that for all x ∈ s
and y ∈ s, if x 6= y, then f(x) 6= f(y). It is to show that there is a function g : N → s as in the theorem.

If s = ∅ we are done; so assume s is nonempty and let x0 ∈ s be any member of s. Construct a function

g : N→ s as follows: for all n such that there is an x ∈ s with f(x) = n, let g(n) = x. For all other n, let

g(n) = x0. Because according to the de�nition of f , every x ∈ s is mapped to a unique n ∈ N, it follows
that for all x ∈ s there is a n ∈ N such that g(n) = x.

Right-to-le�. If s = ∅, there is nothing to show. So let s 6= ∅ be arbitrary and assume there is a function

g : N → s as in the theorem. It is to show that there is a function f : s → N such that for all x ∈ s and
y ∈ s, if x 6= y, then f(x) 6= f(y). De�ne f as follows. For every x ∈ s, let n be the smallest number with

g(n) = s and de�ne f(x) = n. Now, let x ∈ s and y ∈ s. Show that if f(x) = f(y), then x = y (the

contrapositive of the condition on f). If f(x) = f(y) = n then x = g(n) and y = g(n). Because g is a

function that maps every n to a unique member of s, this means that x = y.

�is is useful because if we have a countable set s and a function g as in the theorem, we can write s as

s = {g(i) | i ∈ N} or, sloppily, as s = {g(0), g(1), g(2), ...}. We call this enumerating the set s. If

we know there is a function g, we need not even mention it and can write an enumeration of s directly

as s = {x0, x1, x2, ...} or, less sloppily, as s = {xi | i ∈ N}. Sometimes, we write even �nite sets s as

s = {xi | i ∈ N} (in this case, we are simply multiply-mentioning some element as in the proof above).

We can also extend our set-theoretic operations of union and intersection to the countably in�nite.

De�nition 32. Let {si | i ∈ N} be a countable set of sets. We write

⋃
i∈N si for the union of the sn and

de�ne it as follows.⋃
i∈N si = {x | there is a number i such that x ∈ si}.

Similarly, we write

⋂
i∈N si for the intersection of the si and de�ne it as follows.⋂

i∈N si = {x | for all numbers i it is the case that x ∈ si}.

�e following is a central and historically important result in Set �eory. It will be useful for proving

completeness.

�eorem 2.28. �e union of countably many countable sets is countable. (More precisely: if all members of

{si | i ∈ N} are countable, then
⋃
i∈N si is countable.)

Proof. Let {si | i ∈ N} be an arbitrary countable set where all members are countable.

We may make the additional assumption that they are all countably in�nite so that each si can be wri�en

as si = {si,j | j ∈ N}without multiply mentioning members. (Remark: �is uses the Axiom of Countable

Choice, a generally harmless assumption.)

48

We may assume this because if some of the si are �nite, we just add additional “dummy” elements. �is

makes the set

⋃
i∈N si larger, but since obviously subsets of countable sets are countable, if we show that⋃

i∈N si is countable with extra elements, we have also shown that it is countable without extra elements.

We may also assume that all si are pairwise disjoint, i.e. for all i 6= j there is no x such that x ∈ si and
x ∈ sj . We may assume this because if there are such x, we just remove them from all sets but one and the

set

⋃
i∈N si will be the same.

Assumptions like the above two are sometimes called assumptions without loss of generality (or ‘wlog’

for short). �is is because we make additional assumptions and, normally, additional assumptions make a

theorem less general (as it then applies in fewer cases). But since we have stated how we could proceed

when the assumptions are not the case and still recover the theorem, we do not lose generality by assuming

them.

We need to �nd a function f :
⋃
i∈N si → N. Because we have assumed the si to be pairwise disjoint, this

means we need to �nd a function f that maps each si,j to a number. (If the si were not disjoint, it could

be that there are i, j and l, k with i 6= l, but si,j = sl,k, so the members of

⋃
i∈N si → N would not be

individuated by identifying them as some si,j .) �e following is such a function.

f(si,j) = i+
(i+ j)(i+ j + 1)

2

�is is the Cantor Pairing Function.

It looks very strange, but there is a principled way to �nd this function (it’s not like Cantor woke up one

morning with this function in his head). Here is how you would go about �nding it. Consider the following

strategy for mapping the si,j into the numbers.

1. Map s0,0 to 0.

2. Map s0,1 to 1 and s1,0 to 2.

3. Map s0,2 to 3 and s1,1 to 4 and s2,0 to 5.

4. Map s0,3 to 6 and s1,2 to 7 and s2,1 to 8 and s3,0 to 9.

And so on. �at is, in every step, we take one more element of the si we have already begun mapping to

numbers and start with a new set si. But this is an ‘and so on’ that should really be made precise.

Suppose we want to �nd the number that si,j is mapped to for some �xed i and j. We know that we start

mapping the members of si in the (i + 1)th step of the above construction and we get to its member si,j

in j more steps. �us, we �nd the number that we map si,j to in the (i + j + 1)th step. Note that in the

construction, in step n we make exactly n new assignments. �us when we begin the (i + j + 1)th step,

we have found as many mappings as the sum of (i+ j) and all smaller numbers.

We have shown in the very beginning that the sum of (i+ j) and all smaller numbers is
(i+j)(i+j+1)

2 . �is

is how many numbers we have already assigned in the beginning of the (i + j + 1)st step. Now, within

49

that step, we will get to si,j a�er having already assigned j − 1 numbers in that step. �us the number

assigned to si,j is the next one: i + (i+j)(i+j+1)
2 . (Note that this is just a guide on how to �nd the Cantor

Pairing Function: to make precise that the Function is the result of the ‘and so on’ procedure above, one

would de�ne it a recursion and then prove by induction that it delivers the Function.)

It is le� to show that the Cantor Pairing Function actually does what we want. Obviously, f maps every

member of

⋃
i∈N si to a number. But we still need to show that for all i, j, k and l, if si,j 6= sk,l, then

f(si,j) 6= f(sk,l). We show this by contraposition. Assume that f(si,j) = f(sk,l) and show that si,j = sk,l.

If f(si,j) = f(sk,l), then the following is the case by de�nition:

i+
(i+ j)(i+ j + 1)

2
= k +

(k + l)(k + l + 1)

2
.

First show that i+ j = k+ l. Towards a reductio, assume that i+ j 6= k+ l. �is means either i+ j < k+ l

or i+ j > k+ l. As either case would proceed analogously, assume i+ j < k+ l. To simplify the following

computation, let n = i+ j andm = (k + l)− (i+ j) (som = k + l − n). �en note the following:

i+
(i+ j)(i+ j + 1)

2
= k +

(k + l)(k + l + 1)

2
substitute n andm:

i+
n(n+ 1)

2
= k +

(n+m)(n+m+ 1)

2

i− k =
(n+m)(n+m+ 1)

2
− n(n+ 1)

2

=
n2 + 2nm+m2 + n+m

2
− n2 + n

2

=
2nm+m2 +m

2
= nm+

m2 +m

2
= nm+

m(m+ 1)

2

Now note that we assumed that i + j < k + l, so m ≥ 1. �is means that nm + m(m+1)
2 ≥ n + 1. So

i− k > n. �is means that i− k > i+ j, which means that 0 > j + k. But this cannot be, contradiction.

�us by reductio, i+ j = k + l. But this entails that i+ j + 1 = k + l + 1, so also:

(i+ j)(i+ j + 1)

2
=

(k + l)(k + l + 1)

2
.

But with i+ (i+j)(i+j+1)
2 = k+ (k+l)(k+l+1)

2 , this means that i = k and since we know that i+ j = k+ l,

it follows that j = l. �is was to show.

From this theorem, we can straightforwardly show that we only have countably many formulae.

�eorem 2.29. �e set wff is countable.

Proof. We show that the set of words over the alphabet At∪{¬,∧,∨,→} is countable. Show by induction

that for each n > 0, the setWn of words of length n is countable.

• Base case. n = 1. �e alphabet is countable: this is shown by the function f that maps p, q, r, ⊥,

50

¬, ∧, ∨ and → to the numbers 0–7, respectively, and all atoms pi to 8 + i. Since every word of

length 1 corresponds to a single symbol, the same mapping shows that the set of words of length 1

is countable.

• Inductive step. Induction hypothesis: Assume for a �xed but arbitrary n that the set of words of

length n is countable. Show that the set of words of length n+ 1 is countable.

Enumerate the alphabet as {xn | n ∈ N}. For each symbol xn, let sn = {ya〈xn〉 | y ∈ Wn}. By the

induction hypothesis, there is a function f : Wn → N showing that Wn is countable. We can �nd

a function f ′ : sn → N by de�ning f ′(ya〈xn〉) = f(y). �is shows that sn is countable: if x ∈ sn,
x′ ∈ sn and x 6= x′, then there are y ∈ Wn, y

′ ∈ Wn such that x = ya〈xn〉 and x′ = y′a〈xn〉. So
since x 6= x′, y 6= y′. Hence f(y) 6= f(y′) and therefore f ′(x) 6= f ′(x′).

Each word of length n+ 1 can be formed by appending a symbol to a word of length n, so it follows

thatWn+1 =
⋃
n∈N sn. By the previous theorem, this set is countable.

�is concludes the induction. �e set of all words is

⋃
n∈NWn, which is countable by the previous theorem.

As wff is a subset of this set, it is countable as well.

Our task is to prove the Satis�ability �eorem. To show that a set is satis�able, we need to provide a

valuation that makes all members true. How would one go about �nding a valuation from a set? �e only

thing we know is that all members of the set should be true given the valuation.

At the very least, we can take all atoms from the set and assign them value 1. But this is not su�cient:

a consistent set could contain a formula like p ∨ q without containing either p or q, so just de�ning a

valuation by assigning 1 to all atoms would not result in a valuation that makes p∨ q true. We also cannot

just randomly pick one of p or q in such a case, as it could be the case that other formulae in the set rule out

making p true—and possibly for non-trivial reasons (the set could contain complex formulae like A→ ¬p
for highly complex A).

�e trick is to take a consistent set and extend it to a larger set that decides the truth value of all the atoms.

�e following de�nition states what the goal of such an extension is.

De�nition 33. A set of formulae Γ is called maximally consistent i�Def it is consistent and all proper

supersets Γ′ of Γ are inconsistent.

�ere are many maximally consistent sets.

Example. If V is a valuation, then the set {A | V∗(A)} (the set of all formulae that are true given V) is
maximally consistent.

First show that it is consistent: if {A | V∗(A) = 1} is inconsistent, then {A | V∗(A) = 1} ` ⊥. So

by Soundness, {A | V∗(A) = 1} |= ⊥. But by de�nition of semantic consequence, it would follow that

V∗(⊥) = 1, which cannot be. �en show that it is maximal: if Γ ⊃ {A | V∗(A) = 1}, then there is some

A ∈ Γ with V∗(A) = 0. But then V∗(¬A) = 1, so ¬A ∈ {A | V∗(A) = 1}. �en Γ ` ⊥ by (¬E.).

51

�e crucial result is now that if we have a consistent set, we can always extend it to a maximally consistent

one.

�eorem 2.30. If Γ is consistent, there is a set of formulae Γ̂ ⊇ Γ that is maximally consistent.

Proof. Let Γ be an arbitrary consistent set. We have shown above that wff is countable, so enumerate it as

wff = {Ai | i ∈ N}.

By recursion on the natural numbers, now de�ne sets Γn for each natural number n.

• Base case, n = 0: Γ0 = Γ.

• Inductive step. Suppose we have already constructed Γn for a �xed but arbitrary n. �en de�ne Γn+1

as follows. If Γn ∪ {An} is consistent, let Γn+1 = Γn ∪ {An}, otherwise let Γn+1 = Γn.

�en let Γ̂ =
⋃
n∈N Γn, i.e. for all formulae A, A ∈ Γ̂ i� there is a number n such that A ∈ Γn. It is easy

to see that if i < j, then Γi ⊆ Γj and that all Γi are consistent. In particular, Γ ⊆ Γ̂. Now show that Γ̂ is

maximally consistent.

First show that it is consistent. Assume towards a reductio that Γ̂ ` ⊥. �ere can only be �nitely many

premisses B0, ..., Bn involved in this proof. For any i, if Bi ∈ Γ̂, this means there is some n such that

Bi ∈ Γn. For eachBi let ni be the smallest number so thatBi ∈ Γni . Let n̂ be the maximum of the ni. �is

means that for all i, Bi ∈ Γn̂. But this means that Γn̂ ` ⊥. But all Γn are consistent, hence contradiction.

�us Γ̂ is consistent.

�en show that Γ̂ is maximally consistent. Assume towards a reductio that it is not, i.e. there is some

formula A /∈ Γ̂ such that Γ̂ ∪ {A} is consistent. �ere is some number n such that A = An. Because

A /∈ Γ̂, An was not added in the (n+ 1)th step of the above recursion. So Γn ∪ {An} is inconsistent. But
Γn ∪ {An} ⊆ Γ̂ ∪ {An}. So all premisses required for the proof of ⊥ from Γn ∪ {An} are in Γ̂ ∪ {An}.
�us Γ̂ ∪ {An} is inconsistent. Contradiction to our assumption. �us Γ̂ is maximally consistent.

Maximally consistent sets have a very important property: they are deductively closed.

�eorem 2.31. Let Γ̂ be a maximally consistent set. �en Γ̂ is deductively closed, i.e. for all A, if Γ̂ ` A,
then A ∈ Γ̂.

Proof. Let Γ̂ be arbitrary andmaximally consistent. LetA be an arbitrary formula such that Γ̂ ` A. Towards
a reductio, assume that A /∈ Γ̂. Because Γ̂ is maximally consistent, this means that Γ̂∪ {A} is inconsistent.
By double-negation elimination, this means that Γ̂ ∪ {¬¬A} is inconsistent. Hence by �eorem 2.14,

Γ̂ ` ¬A. But then because Γ̂ ` A, Γ̂ is inconsistent. Contradiction to the assumption that Γ̂ is maximally

consistent. �us, by reductio, A ∈ Γ̂.

Now we are ready to prove the Satis�ability �eorem and, with it, Completeness.

Proof (Satis�ability �eorem). Let Γ be an arbitrary, consistent set of formulae. Let Γ̂ ⊇ Γ be maximally

consistent. Let V be a valuation de�ned as follows: if a is an atom, V(a) = 1 i�Def a ∈ Γ̂.

52

Now show by induction over the construction of formulae that for all w�s A: A ∈ Γ̂ i� V∗(A) = 1.

• Base case. Suppose A is atomic. If A ∈ Γ̂ then by de�nition V(A) = 1, so V∗(A) = 1. Conversely, if

V∗(A) = 1, then V(A) = 1, which by de�nition means that A ∈ Γ̂.

• Inductive steps.

– SupposeA = B∧C for �xed but arbitraryB andC . Induction hypothesis: B ∈ Γ̂ i�V∗(B) = 1

and C ∈ Γ̂ i� V∗(C) = 1. It is to show that A ∈ Γ̂ i� V∗(A) = 1.

Le�-to-right. Suppose that A ∈ Γ̂ and show V∗(A) = 1. By (∧E.), Γ̂ ` B and Γ̂ ` C . By the

previous theorem, B ∈ Γ̂ and C ∈ Γ̂ so by the IH, V∗(B) = 1 and V∗(C) = 1. By the Truth

Table for ∧, V∗(A) = 1.

Right-to-le�. Suppose that V∗(A) = 1 and show that A ∈ Γ̂. By the Truth Table for ∧,
V∗(A) = 1 entails that V∗(B) = 1 and V∗(C) = 1. By the IH, B ∈ Γ̂ and C ∈ Γ̂, so by (∧I.)
Γ̂ ` A and so by the previous theorem A ∈ Γ̂.

– Suppose A = ¬B for a �xed but arbitrary B. Induction hypothesis: B ∈ Γ̂ i� V∗(B) = 1.

Le�-to-right. Suppose that A ∈ Γ̂ and show V∗(A) = 1. Assume towards a reductio that

V∗(A) = 0. By the Truth Table for ¬, V∗(B) = 1, so by the IH B ∈ Γ̂. But by assumption

A ∈ Γ̂, i.e.¬B ∈ Γ̂. So Γ̂ is inconsistent. Contradiction to Γ̂ being maximally consistent. Hence

by reductio, V∗(A) = 1.

Right-to-le�. Suppose that V∗(A) = 1 and show that A ∈ Γ̂. By the Truth Table for negation,

V∗(B) = 0, so by the IH B /∈ Γ̂. Because Γ̂ is maximally consistent, Γ̂ ∪ {B} is inconsistent,
i.e. Γ̂ ∪ {B} ` ⊥. So by (¬I.), Γ̂ ` ¬B. By the previous theorem, ¬B ∈ Γ̂, so A ∈ Γ̂.

– SupposeA = B∨C for �xed but arbitraryB andC . Induction hypothesis: B ∈ Γ̂ i�V∗(B) = 1

and C ∈ Γ̂ i� V∗(C) = 1. It is to show that A ∈ Γ̂ i� V∗(A) = 1.

Le�-to-right. Suppose that A ∈ Γ̂ and show V∗(A) = 1. Towards a reductio, assume that

V∗(A) = 0. By the Truth Table for ∨, V∗(B) = 0 and V∗(C) = 0. By the IH, this means that

B /∈ Γ̂ and C /∈ Γ̂. As Γ̂ is maximally consistent, this means that Γ̂ ∪ {B} and Γ̂ ∪ {C} are
inconsistent, i.e. Γ̂ ∪ {B} ` ⊥ and Γ̂ ∪ {C} ` ⊥. But then because A ∈ Γ̂, by (∨E.) it follows
that Γ̂ ` ⊥. Contradiction. Hence by reductio, V∗(A) = 1.

Right-to-le�. Suppose that V∗(A) = 1 and show that A ∈ Γ̂. By the Truth Table for ∨,
V∗(A) = 1 means there are two cases.

∗ Case 1. V∗(B) = 1. By the IH, B ∈ Γ̂, so by (∨I.) Γ̂ ` A. By the previous theorem, A ∈ Γ̂.

∗ Case 2. V∗(C) = 1. By the IH, C ∈ Γ̂, so by (∨I.) Γ̂ ` A. By the previous theorem, A ∈ Γ̂.

By the IH, B ∈ Γ̂ and C ∈ Γ̂, so by (∧I.) Γ̂ ` A and so by the previous theorem A ∈ Γ̂.

– Suppose A = B → C for �xed but arbitrary B and C . Induction hypothesis: B ∈ Γ̂ i�

V∗(B) = 1 and C ∈ Γ̂ i� V∗(C) = 1. It is to show that A ∈ Γ̂ i� V∗(A) = 1.

53

Le�-to-right. Suppose that A ∈ Γ̂ and show V∗(A) = 1. Assume towards a reductio that

V∗(A) = 0. By the Truth Table for →, this means that V∗(B) = 1 and V∗(C) = 0. By the

induction hypothesis, this means that B ∈ Γ̂ and C /∈ Γ̂. Because A ∈ Γ̂ and B ∈ Γ̂, Γ̂ ` C by

(→E.). So C ∈ Γ̂ by the previous theorem. Contradiction. Hence by reductio, V∗(A) = 1.

Right-to-le�. Suppose that V∗(A) = 1 and show that A ∈ Γ̂. As V∗(A) = 1, there are two

cases: V∗(B) = 0 and V∗(C) = 1 (because B → C ≈ ¬B ∨ C).

∗ Case 1. V∗(B) = 0. By the IH, B /∈ Γ̂, so Γ̂ ∪ {B} is inconsistent, i.e. Γ̂ ∪ {B} ` ⊥. By
(RAA) with an empty discharge, Γ̂ ∪ {B} ` C , so by (→I.), Γ̂ ` B → C . By the previous

theorem, A ∈ Γ̂.

∗ Case 2. V∗(C) = 1. By the IH, C ∈ Γ̂, so by (→I.) with an empty discharge, Γ̂ ` B → C .

By the previous theorem, A ∈ Γ̂.

�is concludes the induction. �us for allA ∈ Γ̂, V∗(A) = 1. Hence since Γ ⊆ Γ̂, for allA ∈ Γ, V∗(A) = 1.

�us Γ is satis�able.

Note that although the Soundness theorem rested (in a sense) on our meta-language proof-methods being

sound for meta-language truth, the Completeness theorem does not in any sense rest on the completeness

of the meta-language.

An immediate upshot is that we can �nally prove the compactness of semantic consequence.

�eorem 2.32. For all sets of formulae Γ and formulaeA: If Γ |= A there is a �nite Γ′ ⊆ Γ such that Γ′ |= A.

Proof. Let A and Γ be arbitrary and assume Γ |= A. By Completeness, Γ ` A. By compactness of `, this
means that there is a �nite Γ′ ⊆ Γ with Γ′ ` A. By Soundness, Γ′ |= A.

3 Predicate Logic

In propositional logic, we abstracted away from the particular contents of sentences and merely associated

a truth value with each sentence. We now eliminate this abstraction and look at what kinds of contents

sentences can have.

3.1 Languages and Structures

We now want to speak about particular sentences and their truth values. Amongst the sentences in our

language that are useful for these purposes, the obvious candidates are the declarative sentences. In their

simplest form, declarative sentences consist of a noun phrase, denoting some object, and a verb phrase,

denoting some property. Such a sentence is true if the denotation of the noun phrase has the property

denoted by the verb phrase. Some examples:

• Hypatia is mortal. (true i� the person Hypatia has the property being mortal)

• �e square root of 2 is irrational. (true i� the number

√
2 has the property being irrational)

54

We can use functions to pick out the denotation of the noun phrase, as in the following examples.

• Hypatia’s mother is human. (true i� the person that is the mother-of the person Hypatia has the

property being human).

• 5 plus 6 is prime. (true i� the number that is the sum-of the numbers 5 and 6 has the property being

prime).

Sometimes, properties themselves come with reference to an object.

• Hesperus is Phosphorus. (true i� the thing Hesperus has the property being (equal to) Phosphorus.)

• London is west of Amsterdam. (true i� the thing London has the property being west of Amsterdam.)

• 5 is less than 7. (true i� the number 5 has the property being less than the number 7.)

In these cases, it might be easier to not speak of properties, but of relations.

• Hesperus is Phosphorus. (true i� the things Hesperus and Phosphorus stand in the equal relation.)

• London is west of Amsterdam. (true i� the things London and A’dam stand in the west-of relation.)

• 5 is less than 7. (true i� the numbers 5 and 7 stand in the less-than relation.)

An useful thing about this manner of speaking is that we can speak of relations that relate more than just

two objects.

• 5 is in between 3 and 7. (true i� the numbers 5, 3 and 7 stand in the in-between relation.)

�ere is much (much) more to say about the syntax and truth-conditions of declarative sentences. For

the purposes of predicate logic, however, we are happy with the language of names (Hypatia, Hesperus,

London), functions (mother-of) and relations (being-mortal, west-of, in-between).

De�nition 34 (Language). A language is a quadruple L = 〈C,F ,R, α〉 where C, F , R are pairwise

disjoint sets of symbols (i.e. no symbol occurs in both C and F , both C and R or both F and R) and
α : F ∪R → N is a function.

�emembers of C are called constant symbols (or names), themembers ofF are called function symbols
and the members ofR are called relation symbols (or predicate symbols).

�e function α associates each function symbol and relation symbol with a natural number, the arity of

the function/relation symbol. �e arity of a function or relation symbol is howmany arguments it requires.

For example, in the above examples, ‘’s mother’ is a function with arity 1 (it takes one argument), ‘plus’

is a function with arity 2 (it takes two arguments), ‘mortal’ is a relation with arity 1 and ‘in between’ is a

relation symbol with arity 3. Note that in principle we can consider 0-ary function symbols and relation

symbols, but these are usually not very interesting.

Example. Here are some examples of languages.

• �e language of arithmetic is C = {‘0’}, F = {‘s’, ‘+ ’, ‘ · ’},R = ∅ with α(‘s’) = 1, α(‘+ ’) = 2

and α(‘ · ’) = 2.

• �e language of set theory is C = ∅, F = ∅,R = {‘ ∈ ′} with α(‘ ∈ ’) = 2.

55

• �e language of cardinal geography could be something like: C contains a name for each place

on earth, F = ∅ andR = {‘north-of’, ‘east-of’, ‘south-of’, ‘west-of’} with α(R) = 2 for all R ∈ R.

Note that again this is just syntax. We associate a set of symbols (that could be anything) with an arity to

determine how a well-formed sentence has to look (how many arguments need to be supplied; we will

de�ne this formally shortly). But this in itself does not constitute meaning in any way. Nothing so far

guarantees that, say, the symbol ‘+’ denotes the function for addition.

Languages receive meanings from being interpreted.

De�nition 35 (Structure and Interpretation). Given a language L = 〈C,F ,R, α〉, an L-structure is an

ordered pairM = 〈M, I〉 where:

1. M is a nonempty set (the domain ofM).

2. I is an interpretation of the symbols in L i.e.:

(a) for each c ∈ C, I(c) is an element ofM .

(b) for each F ∈ F , I(F) is a function that maps α(F)-many elements ofM to an element ofM .

(c) for each R ∈ R, I(R) is a function that maps α(R)-many elements ofM to a truth value.

A li�le bit of notation: given a setX and a number n we writeXn
for the set of all n-tuples with elements

from X . �en we can write the de�nition of interpretation very compactly:

(a) for each c ∈ C, I(c) ∈M .

(b) for each F ∈ F , I(F) : Mα(f) →M .

(c) for each R ∈ R, I(R) : Mα(r) → {0, 1}.

For example, we can give the intended interpretation of the language of arithmetic by the following

structure:

• M = N

• I(‘0’) = 0,

• I(‘s’) is the function S : N→ N such that for all i ∈ N, S(i) = i+ 1.

• I(‘ + ’) is the function p : N2 → N such that for all i, j ∈ N, p(i, j) = i+ j.

• I(‘ · ’) is the functionm : N2 → N such that for all i, j ∈ N,m(i, j) = i · j.

We will not always keep around the quotation marks and write something like: for all numbers i, j de�ne

I(+)(i, j) = i + j. Here we use our meta-language operation + (which means addition) to de�ne an

interpretation of symbol + (which in itself has no meaning). As the symbol occurs in an interpretation

function, we should not be confused about this. (But we should still be careful.)

Of course, there are many other (unintended?) interpretations of a language. We could just as well interpret

the language of arithmetic as follows.

• M = {♥,♣}

56

• I(‘0’) = ♥,

• I(‘s’) is the function S such that S(♥) = ♥ and S(♣) = ♥.

• I(‘ + ’) is the function p such that S(♥,♣) = ♣ and S(♣,♥) = ♥.

• I(‘ · ’) is the functionm such that S(♥,♣) = ♥ and S(♣,♥) = ♥.

Now note that, at least intuitively, we can chain together function symbols. For example, in the language

of arithmetic, we should be able to talk about the successor of the successor of the successor of 0 (or: sss0).

Such complex expressions are called terms.

3.2 Terms and their Interpretation

Given a language, we can de�ne the set of terms over that language by recursion.

De�nition 36 (Terms over a Language). Let L = 〈C,F ,R, α〉 be a language. Let V = {xi | i ∈ N} be a
set of variable symbols (of symbols that are not part of the language). �e set of terms Tm(L) over L is

de�ned by the following recursion.

i. For all constant symbols c ∈ C, 〈c〉 ∈ Tm(L).

ii. For all variable symbols x ∈ V , 〈v〉 ∈ Tm(L).

iii. If F ∈ F with α(F) = n and t is a concatenation of n members of Tm(L), then 〈f〉at ∈ Tm(L).

(sloppily: If F ∈ F with α(F) = n and t0, ..., tn−1 ∈ Tm(L), then 〈F 〉ata0 ...atn−1 ∈ Tm(L).)

iv. Nothing else is a term.

We will usually not be this precise and instead of, for example, 〈+, s, s, 0, s, 0〉 just write +ss0s0.

�eorem 3.1 (Unique Construction of Terms). Let L = 〈C,F ,R, α〉 be a language. For each t ∈ Tm(L),

exactly one of the following is the case.

1. �ere is a c ∈ C such that t = 〈c〉.

2. �ere is a v ∈ V such that t = 〈v〉.

3. �ere are unique terms t0, ..., tα(f)−1 and a unique F ∈ F such that t = 〈F 〉at0a...atn−1.

(Not sloppy: there is a unique F ∈ F and for each i < α(F), there is a unique term ti such that

t = 〈F 〉at̂, where t̂ is de�ned by: t̂0 = t0; for i > 0, i < n, t̂i = t̂i−1
ati; t̂ = t̂n−1.)

Proof. �emethod for the proof should be familiar from the proof that the w�s of propositional logic have

unique constructions. First show that no term has an initial segment that is also a term.

For reductio assume that there is a term t with a proper initial segment that is a term. Assume that t has

minimal length with that property. It is clear that t cannot have length 1: any proper initial segment must

have a shorter length and hence have length 0. But there are no terms of length 0. �us t must be formed

by (iii), i.e. there is a function symbol F with arity n and terms t0, ..., tn−1 such that t = 〈F 〉ata0 ...atn−1.

57

Let u be a proper initial segment of t that is a term. �e �rst element of u is the function symbol F . We

know that F has arity n, so u must have the form u = 〈F 〉aua0 ...aun−1 for terms u0, ..., un−1. Since u

is shorter than t, it cannot be the case that for all i < n, ti and ui have the same length. So let i be the

smallest number such that ui has a di�erent length than ti.

Note that because u is an initial segment of t, for all j < i, tj = uj and therefore ui and ti begin at the

same symbol in t. Again because u is an initial segment of t, this means that ui is a proper initial segment

of ti or ti is a proper initial segment of ui. But clearly both ti and ui are shorter than t, so this contradicts

our assumption that t was shortest with the property of having a proper initial segment that is a term.

Contradiction. Hence all proper initial segments of all terms are not themselves terms.

Now prove the theorem. Clearly, every term t can be constructed as (1) or (2) or (3). It is to show that it

can be constructed in exactly one of these ways. So let t be an arbitrary term and distinguish the following

cases.

Case 1. �ere is a c ∈ C such that t = 〈c〉. Because V and C share no members, t 6= 〈v〉 for all v ∈ V .
Because F and C share no members, t 6= 〈F 〉 for all F ∈ F .

Case 2. �ere is a v ∈ V such that t = 〈v〉. As in Case 1, because V , C and F share no members,

t 6= 〈c〉 for all c ∈ C and t 6= 〈F 〉 for all F ∈ F .

Case 3. �ere is aF ∈ F with arity n and terms t0, ..., tn−1 such that t = 〈F 〉ata0 ...atn−1. We cannot

be in case (1) or (2) because F , C and V share no members. Assume towards a reductio that there is

a function symbol G ∈ F with arity m and terms u0, .., um−1 such that t = 〈G〉aua0 ...aum−1 but

F 6= G or there is some i such that ui 6= ti. Because the �rst symbol in t is F it follows that G = F

and hence alsom = n. �us there must be some i with ui 6= ti. Let i be minimal with that property.

�en either ui is a proper initial segment of ti or ti is a proper initial segment of ui. Neither can be

the case. Contradiction. Hence by reductio, there is no such G and terms u0, ..., um−1. �is was to

show.

�is concludes the proof.

With unique construction in place we can again allow ourselves some notational conventions to make

terms easier to read. Instead of +ss0s0 we may also write +(ss0, s0) (i.e. for function symbols with arity

> 1, we add parentheses and commas for readability). For binary function symbols like + we may also

sometimes use the familiar notation ss0 + s0. When we do so, we have to be careful to add parentheses

for disambiguation.

Now, we can de�ne what it means to assign them an interpretation under a structure. Intuitively, a term

should be interpreted to a member of the domain of a structure (i.e. terms are just complex names for

things).

De�nition 37 (Interpretation of Terms). Let L = 〈C,F ,R, α〉 be a language, M = 〈M, I〉 be an L-
structure and f : V → M a function that assigns to each variable a member of the domain ofM (we call

58

such f assignment functions). For each t ∈ Tm(L) de�ne If (t), its interpretation of t inM under f
by recursion.

• Base case 1. t = c for some c ∈ C. �en If (t) =Def I(c).

• Base case 2. t = x for some x ∈ V . �en If (t) =Def f(x).

• Recursive step. t = Ft0...tn−1 for a function symbol F with arity n and terms t0 … tn−1. �en

If (t) =Def I(F)(If (t0), ..., I
f (tn−1)).

For the recursive step, recall that I(F) is a function from Mn
to M and that for each i < n, If (ti)

is a member of M . �us in the recursive step If (t) is the result of applying the function I(F) to the

interpretations of the terms ti.

As an example, recall the intended interpretation I of the language of arithmetic and the term sss0. Let f

be any assignment function (it does not ma�er here as this term contains no variables). We can compute

If (sss0) as follows:

• sss0 is as in the recursive step: s is a unary function symbol and ss0 is a term.

So If (sss0) = I(s)(If (ss0)) = If (ss0) + 1.

• ss0 is as in the recursive step: s is a unary function symbol and s0 is a term.

So If (ss0) = I(s)(If (s0)) = If (s0) + 1.

• s0 is as in the recursive step: s is a unary function symbol and 0 is a term.

So If (s0) = I(s)(If (0)) = If (0) + 1.

• 0 is as in a base case. If (0) = I(0) = 0.

• Now ascend back through the recursion: If (s0) = If (0)+1 = 0+1 = 1, so If (ss0) = If (s0)+1 =

1 + 1, so If (sss0) = If (ss0) + 1 = 1 + 1 + 1 = 3.

�us the interpretation of sss0 in I is the number 3.

3.3 �e Language of Predicate Logic

We are yet missing one important part of our language. Instead of just talking about the properties of

de�nite things, we may also want to claim that all things or some things have a property.

• Everything is extended in space.

• All humans are mortal.

• Some numbers are prime.

To be able to express such things, we extend our vocabulary with the quanti�ers ∀ (‘all’) and ∃ (‘exists’,
‘there is’). We can now de�ne the well-formed formulae of predicate logic over a language. (Note that the

de�nition already uses our notational conventions about not explicitly mentioning quotation and 〈 〉.)

De�nition 38. Let L be a language. De�ne by recursion the set wff(L).

i. If t0 and t1 are terms over L, then t0 ≡ t1 ∈ wff(L).

ii. If R is an n-ary relation symbol of L and t0, ..., tn−1 are terms over L, then Rt0, ..., tn−1 ∈ wff(L).

59

iii. ⊥ ∈ wff(L).

iv. If A ∈ wff(L), then also ¬A ∈ wff(L).

v. If A ∈ wff(L) and B ∈ wff(L), then also (A ∧B) ∈ wff(L), (A ∨B) ∈ wff(L) and

(A→ B) ∈ wff(L).

vi. If A ∈ wff(L) and x ∈ V , then also ∀xA ∈ wff(L) and ∃xA ∈ wff(L)

vii. Nothing else is a member of wff(L).

We will call the formulae formed by (i), (ii) and (iii) the atomic formulae of predicate logic (over some

language). �e symbol ‘≡’ is called identity. We use ≡ to distinguish the object-language symbol for

equality from our meta-language use of =. It is straightforward to prove a Unique Construction theorem

and we omit the proof here. Again, we may use our usual notational conventions for the propositional

logic connectives (e.g. dropping outer parentheses) and for a formula as in (ii) we may add commas and

parentheses like R(t0, ..., tn−1). For binary relation symbols we may also write t0Rt1 (and sometimes add

parentheses around this for disambiguation).

We will however never drop outer parentheses for formulae directly occurring under a quanti�er, e.g.

never write ∀xA ∧ B or ∃xA ∧ B instead of ∀x(A ∧ B) or ∃x(A ∧ B). �is is because doing so would

introduce an ambiguity regarding the following concept. If a variable x occurs in a formula A, then in the

formulae ∀xA (or ∃xA) we say that x is bound by the quanti�er ∀ (or ∃). A variable that is not bound is

free. We can de�ne the set of free variables occurring in a formula A by recursion.

De�nition 39. Let L be a language. For each t ∈ wff(L), de�ne the set var(t) of variables in t as all
variables occurring in t.

De�nition 40. Let L be a language. For each A ∈ wff(L), de�ne the set frvar(A) of free variables in
A as follows.

i. If t0 and t1 are terms over L, then frvar(t0 ≡ t1) = var(t0) ∪ var(t1).

ii. IfR is ann-ary relation symbol and t0, ..., tn−1 are terms, then frvar(Rt0, ..., tn−1) =
⋃
i<n var(ti).

iii. frvar(⊥) = ∅.

iv. If A = ¬B, then frvar(A) = frvar(B).

v. If A = B ∧ C or A = B ∨ C or A = B → C , then frvar(A) = frvar(B) ∪ frvar(C).

vi. If A = ∀xB or A = ∃xB, then frvar(A) is the set frvar(B) without x.

Some examples are as follows. Consider the following formulae from the language of arithmetic.

1. In ∃x · xx ≡ y, the variable x is bound, but the variable y is free.

2. In ∀x∃y + yy ≡ x both x and y are bound and no variable is free.

3. In (+xy ≡ z ∧ ∃x+ xx ≡ x) all of x, y and z are free. �ere is a subformula in which the variable

x is bound, but in the whole formula, x is free.

60

Indeed keeping track of what is bound by a quanti�er is so important that we will almost always write

parentheses around formulae under quanti�ers, so we can see what they bind at a glance. �at is, we

might write the above examples like so.

1. ∃x(·xx ≡ y).

2. ∀x∃y(+yy ≡ x).

3. (+xy ≡ z ∧ ∃x(+xx ≡ x)).

Such parentheses are not strictly speaking necessary (i.e. we can prove Unique Construction without them),

but they help us to read the formulae. Using our other notational conventions, we indeed may write these

same formulae as follows.

1. ∃x(x · x ≡ y).

2. ∀x∃y(y + y ≡ x).

3. x+ y ≡ z ∧ ∃x(x+ x ≡ x).

It is o�en important to know which variables occur free in a formula. We will sometimes talk about a

formula A with free variables x0, ..., xn−1 by writing A(x0, ...xn−1) to indicate this.

3.4 Satisfaction and Models

When we have a language and a structure for that language and also have an assignment function for

the variables, we have everything we need to determine when a formula is true in a structure given
an assignment. �at is, a structure with an assignment is in predicate logic what a valuation was in

propositional logic. When a formula A is true in a structureM and assignment f , we say that 〈M, f〉 is a
model of A or 〈M, f〉 satis�es A. We write this asM, f |= A (read the |= as “models”).

De�nition 41. Let L be a language andM = 〈M, I〉 be an L-structure. Let f : V →M be an assignment

function. �en de�ne by recursion on the construction of the formulae:

i. If t0 and t1 are terms over L, thenM, f |= (t0 ≡ t1) i�Def I
f (t0) = If (t1).

ii. If R is an n-ary relation symbol and t0, ..., tn−1 are terms,

thenM, f |= Rt0...tn−1 i�Def I(R)(If (t0), ..., I
f (tn−1)) = 1.

iii. It is never the case thatM, f |= ⊥.

iv. If A = ¬B, thenM, f |= A i�Def it is not the case thatM, f |= B.

v. If A = B ∧ C , thenM, f |= A i�DefM, f |= B andM, f |= C .

If A = B ∨ C , thenM, f |= A i�DefM, f |= B orM, f |= C .

If A = B → C , thenM, f |= A i�DefM, f |= C or it is not the case thatM, f |= B.

vi. If A = ∀x(B), thenM, f |= A i�Def for all g : V → M that agree with f on the assignment of all

variables except possibly x,M, g |= B.

61

If A = ∃x(B), thenM, f |= A i�Def there is a g : V → M that agrees with f on the assignment of

all variables except possibly x andM, g |= B.

Remark: �ese clauses for the quanti�ers are �rst order, as we quantify over things in the domain. A second

order quanti�er would quantify over properties (or, equivalently, sets of things). For example, in second

order logic one can express something like ‘there is a property that the thing x has’ without specifying

an explicit property, like in �rst order logic one can say ‘there is a thing that has the property P’ without

specifying an explicit thing. Higher order logic can quantify over properties of properties, and then their

properties etc.

Instead ofM, f |= A we sometimes also writeM, I, f |= A, if it is important to highlight the function I .

For an example, again consider the language of arithmetic and its standard interpretation 〈N, I〉. Let f :

V → N be any assignment function.

• N, I, f |= +ss0sss0 ≡ sssss0 (i.e. 2 + 3 = 5).

• N, I, f |= ∀x¬0 ≡ sx (i.e. there is no number whose successor is 0).

• N, I, f |= ∀x(¬x ≡ 0→ ∃y(x ≡ sy ∧ ∀z(x ≡ sz → y ≡ z))
(i.e. every number except 0 has a unique predecessor).

We are usually not particularly interested in formulae with free variables. �e assignment function is intu-

itively tangential to what is “going on” in the structure. Wemore or less only keep the assignment functions

around because they help us de�ne the satisfaction-conditions of the quanti�ers. �ere is however an ex-

ception: using formulae with free variables, we can de�ne relations that we may have not added to our

initial language. For example

• �e following formula L(x, y) de�nes when x is strictly less than y in the language of arithemtic:

L(x, y) = ∃z(¬z ≡ 0 ∧+xz ≡ y).

Observe that in the intended interpretation of arithmetic, for each assignment function f , N, I, f |=
L(x, y) i� f(x) < f(y).

As said, models are to predicate logic what valuations are to propositional logic. Accordingly, we can use

them to de�ne semantic consequence.

De�nition 42 (Semantic Consequence). Let L be a language, let Γ ⊆ wff(L) and A ∈ wff(L). De�ne

Γ |= A i�Def for allL-structuresM and all assignments f , ifM, f |= B for allB ∈ Γ, then alsoM, f |= A.

We can now de�ne our usual notions.

De�nition 43. Let L be a language and A be a well-formed formula in L.

• A is a tautology i�Def for all L-structuresM and all assignments f : V →M ,M, f |= A.

• A is a satis�able i�Def there is aL-structureM and an assignment f : V →M such thatM, f |= A.

• A and B are equivalent i�Def for all L-structuresM and assignments f : V → M , it is the case

thatM, f |= A i�M, f |= B.

62

If A is a tautology, we also write |= A (which indeed means the same as ∅ |= A).

We can again characterise equivalence in the object language and by way of semantic consequence.

�eorem3.2. LetL be a language andA andB be w�s inL. A andB are equivalent i� (A→ B)∧(B → A)

is a tautology.

�eorem 3.3. LetL be a language andA andB be w�s inL. A andB are equivalent i�A |= B andB |= A.

�e proofs are immediate consequences of the de�nition of |=.

Remark: Some logicians use a di�erent de�nition of semantic consequence. Call a formula A true in a

structureM i�Def for all assignments f ,M, f |= A. �en onemay de�neΓ |= A i� all modelsM thatmake

all members of Γ true, also makeA true. A side-e�ect is that a formulaA(x) is equivalent to ∀xA. One can
also not de�ne semantic consequence for formulae with free variables at all and instead say that implicitly

all free variables are universally quanti�ed. We will not do any of this. But this is a reminder that when

free variables are concerned, there is some variation in the literature and you should always carefully
look at the de�nitions. As formulae with free variables are very rarely interesting when talking about

semantic consequence, this will not concern us much. All the di�erent de�nitions agree on when Γ |= A

is the case when neither A nor any member of Γ have free variables.

Some important equivalences are (in all languages):

1. ∀xA is equivalent to ¬∃x¬A.

2. ∃xA is equivalent to ¬∀x¬A.

3. ∀x(A ∧B) is equivalent to ∀xA ∧ ∀xB.

4. ∃x(A ∨B) is equivalent to ∃xA ∨ ∃xB.

�e proof of the �rst example is as follows.

Proof. Let L be a language, A be a formula, 〈M, I〉 be a L-structure and f be an assignment.

Le�-to-right. By contraposition. Assume that notM, I, f |= ¬∃x¬A and show that notM, I, f |= ∀xA.
By the clause for negation, the assumption entails that M, I, f |= ∃x¬A. �is means that there is an

assignment g di�ering from f at most in what it assigns to x so that M, I, g |= ¬A. But this means

that not M, I, g |= A. �is means that it is not the case that for all assignments g that di�er from f at

most in what they assign to x it is the case that M, I, g |= A. �us by de�nition it is not the case that

M, I, g |= ∀xA.

Right-to-le�. By contraposition. Assume that notM, I, f |= ∀xA and show that notM, I, f |= ¬∃x¬A.
�e assumption entails that there is an assignment g di�ering from f at most in what it assigns to x so that

not M, I, g |= A, i.e. M, I, g |= ¬A. �us by de�nition, M, I, g |= ∃x¬A. Hence it is not the case that
M, I, g |= ¬∃x¬A.

63

Note however that the following are not equivalent.

1. ∀x(A ∨B) is not equivalent to ∀xA ∨ ∀xB.

2. ∃x(A ∧B) is not equivalent to ∃xA ∧ ∃xB.

For a counterexample , consider a language with two constant symbols c0 and c1. Let 〈M, I〉 be a structure
withM = {0, 1} and I(c0) = 0 and I(c1) = 1.

�en clearly for all assignments f it is the case thatM, I, f |= ∀x(x ≡ c0 ∨ x ≡ x1), but not the case that
M, I, f |= ∀x(x ≡ c0) ∨ ∀x(x ≡ c1). �is shows (1).

Also, for all assignments f it is the case thatM, I, f |= ∃x(x ≡ c0) ∧ ∃x(x ≡ c1), but not the case that

M, I, f |= ∃x(x ≡ c0 ∧ x ≡ c1). �is shows (2).

Now, as usual, we can li� the de�nition of satis�ability to sets of formulae.

De�nition 44. Let L be a language and Γ be a set of well-formed formulae in L.

• Γ is satis�able i�Def there is a L-structureM and an assignment f : V → M such that for all

A ∈ Γ,M, f |= A.

And then we have our usual theorem about semantic consequence and satis�ability.

�eorem 3.4. Let L be a language, Γ be a set of w�s in L andA be a w� in L. �en: Γ |= A i� Γ∪ {¬A} is
not satis�able.

�e proof is analogous to the proof of �eorem 2.13.

We do not, however, have something analogous to Coinciding Valuations (�eorem 2.4). Using this theorem,

we could check whether a formula is satis�able by only checking what a �nite amount of valuations assigns

to a �nite amount of atoms. �e analogue would be that one could check whether a predicate logic formula

A is satis�able by checking a �nite amount of models with �nite domain. But some formulae in predicate

logic can only be satis�ed by in�nite models.

An example are Robinson’s axioms. Let LA be the language of arithmetic (containing a constant symbol

0,unary function s and binary functions +, ·).

De�nition 45. Robinson’s axioms are the set of the following formulae in LA.

1. ∀x(¬sx ≡ 0).

2. ∀x∀y(sx ≡ sy → x ≡ y).

3. ∀x(x ≡ 0 ∨ ∃y(sy = x)).

4. ∀x(x+ 0 ≡ x) and ∀x∀y(x+ sy ≡ s(x+ y)).

5. ∀x(x · 0 ≡ 0) and ∀x∀y(x · sy ≡ (x · y) + x).

64

It is easy to see that Robinson’s axioms are only all satis�ed in in�nite models. To wit: Let for every

natural number n, ‘sn0’ be the term obtained by pre�xing 0 with n many s and (in particular, s00 = 0).

�e intuitive reason is that for all numbers n andm, if n 6= m, then for every model of Robinson’s axioms

M, I, f , If (sm0) 6= If (sn0), soM has at least as many members as there are natural numbers. Formally:

�eorem 3.5. If M, I, f is a model of all Robinson axioms, then for all n and m > 0, if m < n, then

If (sm0) 6= If (sn0).

Proof. LetM, I, f be a model of all Robinson axioms. If n = 0 there are nom < n, so there is nothing to

show. �us �x some arbitrary n > 0 and m < n. Assume for reductio that If (sn0) = If (sm0). We will

then show that If (0) = If (sn−m0), contradicting the �rst Robinson axiom.

Formally this goes as follows. Show by induction that for all k, if k ≤ m, then If (sm−k0) = If (sn−k0).

(We will then get the desired contradiction in the case k = m.)

• Base k = 0. �en If (sm−k0) = If (sm0) = If (sn0) = If (sn−k0) by the reductio assumption.

• Inductive step. Induction hypothesis: assume that for some �xed but arbitrary k, if k ≤ m, then

If (sm−k0) = If (sn−k0).

It is to show that if k + 1 ≤ m, then If (sm−(k+1)0) = If (sn−(k+1)0). If k + 1 > m there is

nothing to show, so assume that k + 1 ≤ m. �is entails that k < m, so from the IH we get that

If (sm−k0) = If (sn−k0).

Because k < m, we can write sm−k0 as ssm−(k+1)0 and because m < n also write sn−k0 as

ssn−(k+1)0. So by the IH, it follows that If (ssm−(k+1)0) = If (ssn−(k+1)0).

By de�nition of |=, this means thatM, I, f |= ssm−(k+1)0 ≡ ssn−(k+1)0. By the second Robinson

axiom, it follows thatM, I, f |= sm−(k+1)0 ≡ sn−(k+1)0. �us by de�nition of |=, it is the case that

If (sm−(k+1)0) = If (sn−(k+1)0), which was to show.

�is concludes the induction. �us for all k ≤ m, If (sm−k0) = If (sn−k0).

But now consider the case k = m. �en 0 = sm−k0 and sn−k0 = sn−m)0, which means by the above result

that If (0) = If (sn−m0). Becausem < n, we can write the la�er as If (ssn−(m+1)0). �enM,f, I |= 0 ≡
ssn−(m+1)0. �is contradicts the �rst Robinson axiom.

Hence by reductio, If (sm0) 6= If (sn0).

�us, there is no �nite model of the conjunction of the Robinson axioms. So to verify that they are satis-

�able, we need to take an in�nite model (the natural numbers will do) and show by a proof that they are

a model. But this requires cleverness, not just a mechanical procedure in which one checks �nitely many

�nite assignments of truth values.

65

3.5 Substitution

It is, in some sense, obvious that it does not ma�er which particular variables we use in a formula. For

example, both Q(x) = ∃y(·yy ≡ x) and Q′(z) = ∃x(·xx ≡ z) formalise (in the intended interpretation

of arithmetic) the property of being a square. So we may substitute the variables occurring in a formula for

other variables without changing anything about the meaning of the formula. But we need to be careful.

InQ(x) we cannot just replace xwith y because the result would be ∃y(·yy ≡ y) which is just a tautology.

We may indeed want to substitute entire terms in a formula. For example, we may want to de�ne the

property x1 + x2 is a square (a formula in two free variables) by substituting the term +x1x2 in Q for x.

�e result is ∃y(·yy ≡ +x1x2), which indeed does what we want. But again we need to be careful. If we

were to substitute +xy for x in Q, we would obtain ∃y(·yy ≡ +xy), which again says something else.

A�er some inspection of these problems, we see that they arise when we substitute a variable bound by

a quanti�er. �us we need to be careful about bound variables when de�ning substitution. First de�ne

substitution in terms.

De�nition 46 (Substitution in terms). Let L be a language, s and t be terms in L and x be a variable. �e

substitution of t for x in s, wri�en as s[t/x] is de�ned by the following recursion.

• If s = y where y is a variable, then s[t/x] = t i� x = y and s otherwise.

• If s = c where c is a constant symbol, then s[t/x] = c.

• If s = Ft0...tn−1 for ann-ary function symbolF and terms t0, ..., tn−1, then s[t/x] = Ft0[t/x]...tn−1[t/x].

Note that this de�nition does not ensure that substitutions can be inverted. For example, (x + y)[y/x] is

(y + y). No substitution will get us back to x + y and in particular (x + y)[y/x][y/x] is x + x. So it is

possible to irretrievably lose some information when substituting. While this sounds odd, it is something

that we want to be able to do (as will become clear later).

�e following de�nition takes care of our problems with quanti�ers.

De�nition 47 (Substitution). Let L be a language, x be a variable, t be a term in L and A be a w� in L.
�e substitution of t for x in A, wri�en as A[t/x], is de�ned by the following recursion.

• If A = ⊥, then A[t/x] = A.

• If A = t0 ≡ t1, then A[t/x] = t0[t/x] ≡ t1[t/x].

• If A = Rt0...tn−1 for an n-ary relation symbol R and terms t0, ..., tn−1,

then A[t/x] = Rt0[t/x]...tn−1[t/x].

• If A = ¬B, then A[t/x] = ¬B[t/x].

• If A = B ∧ C , then A[t/x] = B[t/x] ∧ C[t/x].

• If A = B ∨ C , then A[t/x] = B[t/x] ∨ C[t/x].

• If A = B → C , then A[t/x] = B[t/x]→ C[t/x].

66

• If A = ∀yB, then if y = x or y occurs in t, let y′ be a variable symbol that occurs neither in A nor

in t, let B′ = B[y′/y] and de�ne A[t/x] = ∀y′(B′[t/x]). Else de�ne A[t/x] = ∀y(B[t/x]).

• If A = ∃yB, then if y = x or y occurs in t, let y′ be a variable symbol that occurs neither in A nor

in t, let B′ = B[y′/y] and de�ne A[t/x] = ∃y′(B′[t/x]). Else de�ne A[t/x] = ∃y(B[t/x]).

�is means that we do the obvious thing every time, except that in quanti�ers we take care to rename all

bound variables to a variable that does not occur in the rest of the formula or in the term we substitute. It

is obviously the case that renaming bound variables is harmless.

�eorem 3.6. Let L be a language, A a w� in L and x and y be variables such that y does not occur in A.

�en ∀xA is equivalent to ∀y(A[y/x]).

�e proof is immediate from the de�nition of |=.

Note that De�nition 47 is nevertheless somewhat problematic: in the quanti�er cases, we just ‘pick’ an

unused variable symbol y′, but we do not state how to �nd this y′ (we use the Axiom of Choice here). �us

if someone computes the substitution (∀yB)[t/y] by replacing y with y′ and someone else does this by

replacing y with y′′ and y′ 6= y′′, both have equal claim to be correct.

One possible way out of this is that instead of appealing to Choice, we can de�ne a speci�c variable that

we are substituting. E.g. we can recall that we enumerated the variables as V = {xi | i ∈ N} and de�ne

the quanti�er cases as follows.

• If A = ∀yB, then if y = x or y occurs in t, let xi be the variable symbol where i is minimal with the

property that xi occurs neither in A nor in t, let B′ = B[y′/y] and de�ne A[t/x] = ∀y′(B′[t/x]).

Else de�ne A[t/x] = ∀y(B[t/x]).

(existential quanti�er analogous)

�en we have de�ned unique and computable substitutions. But this is cumbersome in practice. A more

‘pragmatic’ solution is to say that if we are in a case where we have to rename, we just don’t do a substi-

tution. To be more formal, consider the following de�nition.

De�nition 48. Let L be a language, x be a variable, t be a term in L and A be a w� in L. We say that t is

free for x in A i� there is no quanti�er binding x in A and whenever ∀yB or ∃yB is a subformula of A

and x occurs in B, then y does not occur in t.

Basically, t is free for x in A if replacing (without renaming anything) t for x in A does not result in a

variable in t being bound by a quanti�er. Some examples:

1. x1 is free for x0 in ∃x2R(x2, x0).

2. x0 is free for x0 in ∃x2R(x2, x0).

3. x2 is not free for x0 in ∃x2R(x2, x0).

4. x0 + x1 is free for x0 in ∃x2R(x2, x0).

67

5. x0 + x2 is not free for x0 in ∃x2R(x2, x0).

Note that it is permissible that x occurs in t for t to be free for x in A.

�en the following is directly provable from De�nition 47.

Lemma 3.7 (Direct Substitution). Let L be a language, x be a variable, t be a term in L and A be a w� in L
such that t is free for x in A. �en A[t/x] is the result of replacing all occurrences of x in A with t.

We will in practice only use direct substitutions, but it is useful to have the general de�nition in place to

prove theorems about substitution in general.

Sometimes we will want to make multiple substitutions, e.g. A[t0/x][t1/y]. �is may have an unintended

side-e�ect: if y occurs in t0, then in this formula, we will have also substituted t1 in t0. Sometimes we do

not want to do this. In this case we write A[t0, t1/x, y] for the simultaneous substitution of t0 for x and t1

for y (without substituting occurrences of x or y in t0 or t1).

In general, we write A[t0, ..., tn−1/x0, ..., xn−1] for the formula obtained by simultaneously substituting

ti for xi. De�ning simultaneous substitution is analogous to the de�nition of simple substitution above

(we will not require a formal de�nition, as we will below see how we can obtain simultaneous substitution

from iterated simple substitution).

3.6 Natural Deduction for Predicate Logic

We obtain the Natural Deduction calculus for predicate logic by extending the Natural Deduction calculus

for propositional logic with (a) rules for quanti�ers and (b) rules for identity. We �x a language L and

de�ne our calculus as follows.

�e following are the rules for the universal quanti�er ∀. �ere is something new: we indicate next to each

rule under which conditions it can be applied.

A[y/x]
(∀I.) if y is a variable not occurring free in ∀xA or in premisses

or undischarged assumptions used to derive A[y/x].∀xA
∀xA

(∀E.) where t is any term.

A[t/x]

�e intuitive justi�cation for the Elimination rule is easy: if we have derived that everything is A, then for

every name we have for a thing—i.e. for every term—we have that it is A. �e Introduction rule is perhaps

a bit more di�cult to justify.

One’s intuitive idea for an Introduction rule may be that if we have derived for all things that they are A,

we may infer ∀xA. However, there are two problems with this: (i) we may have in�nitely many things (but

proofs are �nite), so we might not be able to say that all things are A; (ii) we may not not have a name for

every thing and for this reason be unable to say that all things are A.

A be�er idea is the following. If we derive for an arbitrary name that it has property A, then all things

have property A, so we may infer ∀xA. �is is a version of the proof method we have been using so far to

prove universally quanti�ed statements.

68

Proving Universals

To prove that all x are P take a �xed but arbitrary y and show that it has P .

A free and unused variable y is the formal version of ‘�xed but arbitrary’. It is �xed, because under every

assignment, y gets a de�nitive value. And if y occurs in a premiss or undischarged assumption, then we

may infer some particular properties of y—which means that y is not arbitrary.

In addition, y cannot occur free in ∀xA becausewewant to ensure that from some unused y having property

A, (∀I.) derives that everything has the property A. If y occurs free in ∀xA, this is not necessarily the case.
For example, if A = x ≡ y, then A[y/x] = y ≡ y. But from y ≡ y it should not follow that ∀x(x ≡ y), i.e.

that all things are equal to y.

If y occurs bound in ∀xA and y 6= x, then in A[y/x], the bound instances will have been renamed; this is

formally harmless, but in practice annoying. So when applying (∀I.) we will always pick either x itself or

a y that has not been used at all—that is the easiest and most safe option.

�e following are the rules for the existential quanti�er ∃.

A[t/x]
(∃I.) where t is any term.

∃xA
∃xA

[A[y/x]]i
.
.
.

B
(∃E.)i

if y does not occur free in ∃xA,B, or premisses

or undischarged assumptions.B

Here, the Introduction rule is clear: if we know about any particular thing that it is A, we may infer that

there is something that is A. �e Elimination rule may again seem strange.

Intuitively, one may want to eliminate existential quanti�ers as follows. If we have ∃xA we know that

there is one thing with A. Now, if we can show for everything that if it is A, then some B is true, we can

conclude that B is the case (this is like a general version of Proof by cases). But again we are hindered by

the fact that proofs are �nite and that we may not have names for everything.

So we use the same plan as for the Introduction for universal quanti�ers. If we know that something is A

and from the assumption that an arbitrary name has property A we can infer that B, then we are entitled

to conclude that B. Again, this is a proof method we have already used.

Proving from Existentials

If we know that there is an x with P and we want to show that B is the case, let y be arbitrary but �xed

with property P and show that B.

Usually, when we used this method, B was a contradiction.

�is explains why in (∃E.), y may not occur free in premisses or assumptions—as above, these are require-

ments for y being arbitrary. In addition, y may not occur free in ∃xA because if it would, then the property

A(y) is not the property that ∃xA says one x possesses (as it was above for the universal quanti�er). It

may also not occur in the conclusion B because we want to show that B is the case regardless of what y

denotes, so B cannot itself mention y.

69

�is suggests that the rules for the Introduction of universal quanti�ers and the Elimination of existential

quanti�ers are tightly related. Indeed, the restrictions on (∃E.) can also be motivated by formally deriving

them from (∀I.). �is goes as follows. We know that (in the semantics) ∃xA and ¬∀x¬A are equivalent.

We can reproduce this in the proof theory. To wit, if we treat ∃xA as an abbreviation of ¬∀x¬A, we can
derive (∃E.) as follows.

¬∀x¬A

[¬B]1

[A[y/x]]2
.
.
.

B
(→I.)

2

A[y/x]→ B
(Contraposition)

¬(A[y/x])
(Substitution)

(¬A)[y/x]
(∀I.)

∀x¬A
(¬E.)

⊥
(RAA)

1

B

Note that in the step labelled as ‘Substitution’, the formulae above and below the line are the same formula

(literally, the same sequence of symbols). So this does not mean that there is a rule called ‘Substitution.’ �e

proof given here is a scheme and the ‘Substitution’ step is there to signpost that according to the de�nition

of substitution, we can apply (∀I.) to the conclusion of (Contraposition). In any concrete formal proof there

would not be a step there at all.

Now observe that when we apply (∀I.), ¬B is an undischarged assumption, so y must not be occuring free

inB (and other premisses or assumptions) for this proof to be correct. �e conditions for (∀I.) also demand

that y be not free in ∀xA, so it must not be free in ¬∀x¬A either.

We can also derive (∃I.) from (∀E.) if we abbreviate ∃xA as ¬∀x¬A.

A[t/x]

∀x¬A
(∀E.)

¬A[t/x]
(Substitution)

¬(A[t/x])
(¬E.)

⊥
(¬I.)1¬∀x¬A

As a side bene�t, these arguments establish that we could just abbreviate ∃ by ∀ and ¬.

Finally, the following rules govern identity.

(≡R) where t is a

termt ≡ t
t0 ≡ t1

(≡S) where t0 and t1

are termst1 ≡ t0
t0 ≡ t1 t1 ≡ t2

(≡T) where t0, t1 and t2

are termst0 ≡ t2

�ese formalise the basic properties that our meta-language = has: re�exivity, symmetry and transitivity.

We add to these a rule stating that identicals are intersubstitutable.

t0 ≡ t1 A[t0/x]
(≡Sub) where t0 and t1 are terms

and x is a variableA[t1/x]

70

�ese rules for identity are somewhat inelegant; certainly they do not �t into a schema for Introduction or

Elimination. It is possible to give I/E rules for identity, but these rules are more di�cult to handle.

�ese rules are also more complex than they would strictly need to be. We could state them for variables

instead of terms and derive the versions with terms by introducing and eliminating universal quanti�ers.

While this is a technical possibility, we don’t do so here because it would be odd if the fact that, for example,

a term is self-identical has anything to do with the meaning of the quanti�ers.

Sometimes, wemay not want to substitute all occurrences of a variable in a formula in (≡Sub). For instance,
maybe we have t ≡ t and we want to derive from this that ∃x(x ≡ t). We get such ‘partial’ substitutions

from our quanti�er rules. Note that t ≡ t can be wri�en as (x ≡ t)[t/x]. (If you recall a previous remark,

this is why it is good for us that substitutions can ‘lose information’). �is means that the following is a

correct proof.

t ≡ t
(∃I.)

∃x(x ≡ t)

A more complex example is that maybe from x ≡ y and x + x ≡ y, we want to infer that x + y ≡ y,

i.e. only replacing one occurrence of x by y. �is follows immediately from (≡Sub). To see this, note that

x+ y ≡ y is the same term as (x+ z ≡ y)[y/z] and x+ x ≡ y is the same term as (x+ z ≡ y)[x/z]. �us

the following is a correct proof.

x ≡ y x+ x ≡ y
(≡Sub)

x+ y ≡ y

It is then easy (but tedious) to prove that the following general version of ≡-Substitution holds for any

formula A and n many variables x0, ...xn−1.

t0 ≡ s0 t1 ≡ s1 . . . tn−1 ≡ sn−1 A[t0, t1, ..., tn−1/x0, x1, ..., xn−1]
(≡Sub*)

A[s0, s1, ..., sn−1/x0, x1, ..., xn−1]

We do this by applying (≡Sub) n-times and in step i we leave out any occurrences of xi in all previous sj

(i.e. where j < i). �is is also how we can perform simultaneous substitutions in proofs.

3.7 Hilbert calculus

We can obtain a Hilbert-style calculus for predicate logic using the symbols ≡,→, ¬ and ∃ by le�ing our

existing logical axioms be schematic for formulae in predicate logic. We then add to it the following logical

axioms.

• For all terms t: t ≡ t.

• For all terms t0, t1: t0 ≡ t1 → t1 ≡ t0.

• For all terms t0, t1, t2: (t0 ≡ t1 ∧ t1 ≡ t2)→ t0 ≡ t2
• For all terms t0, t1 and variables x: t0 ≡ t1 → (A[t0/x]→ A[t1/x])

• For all terms t and variables x: A[t/x]→ ∃xA.

• For all variables x: (A→ B)→ (∃xA→ B) if x /∈ frvar(B).

71

Although in propositional logic the Hilbert calculus substantially simpli�ed some arguments, here it is not

much more economical than Natural Deduction. �e above logical axioms are just the results of applying

(→I.) to the Natural Deduction rules. �e only advantage is that we need not worry about dischargeable

assumptions for de�ning the rules for the quanti�ers.

It is straightforward to now prove the Deduction theorem etc for the extended calculus. But we do have

to re-prove our meta-theorems to continue with the Hilbert calculus, so doing so would actually be more

work than using the Natural Deduction calculus from here on out.

4 Soundness for Predicate Logic

�eorem4.1 (Soundness of the First Order Predicate Calculus). LetL be a language,Γ be a set ofL-formulae

and A be a L-formula. If Γ ` A then Γ |= A.

We have basically seen already why the rules for the propositional logic connectives are sound: the clauses

de�ning their satisfaction in a model essentially are the truth tables again. �e di�cult new case are the

quanti�er and identity rules. As these crucially involve substitutions, we need to prove some results about

substitution.

Lemma 4.2 (Substitution in Terms). Let L be a language, M, I be an L-structure, s and t be terms and x

be a variable symbol. If f and g are assignments with g(x) = If (t) and g(v) = f(v) for all v 6= x, then

Ig(s) = If (s[t/x]).

Proof. Let L be a language,M, I be an L-structure, x be a variable, t be a term and f and g be assignments

with g(x) = If (t) and g(v) = f(v) for all v 6= x. Show by induction on the construction of terms that for

all s it is the case that Ig(s) = If (s[t/x]).

• Base. If s = c for a constant symbol c, then Ig(s) = I(c) and If (t[t/x]) = I(c), so Ig(s) =

If (s[t/x]).

• Base. If s = v is a variable, then we are in one of two cases.

– Case 1. v = x. �en s[t/x] = t by de�nition of substitution. So Ig(s) = Ig(x) = If (s[t/x]).

– Case 2. v 6= x. �en s[t/x] = s and Ig(s) = g(v) which by assumption is equal to f(v), which

by de�nition is equal to If (s[t/x]).

In either case, we conclude what is to show.

• Inductive step. Suppose that s = Ft0...tn−1 for an n-ary function symbol F . Induction hypothesis:

for all i < n, Ig(ti) = If (ti[t/x]). It is to show that Ig(s) = If (s[t/x]).

By de�nition of substitution on terms, s[t/x] = Ft0[t/x]...tn−1[t/x]. �us by the de�nition of

the interpretation of terms, If (s[t/x]) = I(F)(If (t0[t/x]), ..., If (tn−1[s/x])). By the induction

hypothesis, If (s[t/x]) = I(F)(Ig(t0), ..., I
g(tn−1)). By de�nition of the interpretation of terms,

this just means that If (s[t/x]) = Ig(s).

72

�is concludes the induction.

From this we get the analogous result about substituting in formulae. �e intuitive meaning of the Sub-

stitution Lemma is that it doesn’t ma�er whether the things we talked about are referred to by variable

symbols or by terms. All that ma�ers is which value they get from the interpretation and assignment.

Lemma 4.3 (Substitution Lemma). Let L be a language,M, I be an L-structure, A be a L-formula, x be a

variable symbol, t be a term that is free for x in A. If f and g are assignments such that g(x) = If (t) and for

all variable symbols v 6= x, f(v) = g(v), thenM, I, f |= A[t/x] i�M, I, g |= A.

Proof. Let L be a language,M, I be an L-structure x be a variable and t be a term. Show by induction on

the construction of formulae that for allA and all assignments f and g with g(x) = If (t) and g(v) = f(v)

for all v 6= x, if t is free for x in A, then it is the case thatM, I, f |= A[t/x] i�M, I, g |= A.

• Base: A = t0 ≡ t1. Let f and g be as required. By de�nition of substitution, A[t/x] = t0[t/x] ≡ t1[t/x].

�en:M, I, f |= A[t/x] i� (def of |=) If (t0[t/x]) = If (t1[t/x]) i� (previous Lemma) Ig(t0) = Ig(t1) i�

(def of |=)M, I, g |= A.

• Inductive step negation. A = ¬B for some formula B. Induction hypothesis: if f and g are as required

and t is free for x in B, thenM, I, f |= B[t/x] i�M, I, g |= B. Show that if f and g are as required and

t is free for x in A, thenM, I, f |= A[t/x] i�M, I, g |= A.

So let f and g be as required (i.e. g(x) = If (t) and g(v) = f(v) for all v 6= x). If t is not free for x

in A, there is nothing to show, so assume that it is. �en t is also free for x in B. �us we can use the

induction hypothesis to conclude thatM, I, f |= B[t/x] i�M, I, g |= B.

�en:M, I, f |= A[t/x] i� (def of substitution)M, I, f |= ¬(B[t/x]) i� (def of |=) notM, I, f |= B[t/x]

i� (contrapositive of the above) notM, I, g |= B i� (def of |=)M, I, g |= ¬B i�M, I, g |= A. �is was

to show.

• Inductive step universal quanti�er. A = ∀zB for some formula B and variable symbol z. Induction

hypothesis: if f and g are as required and t is free for x in B, thenM, I, f |= B[t/x] i�M, I, g |= B.

Show that if f and g are as required and t is free for x in A, thenM, I, f |= A[t/x] i�M, I, g |= B.

So let f and g be as required. If t is not free for x in A, there is nothing to show, so assume that it is.

�en t is also free for x in B, so we can use the induction hypothesis in the argument below. Because t

is free for x in A, it is the case that x 6= z, so by de�nition of substitution, A[t/x] = ∀z(B[t/x]).

Show le�-to-right by contraposition. Assume notM, I, g |= A and show that notM, I, f |= A[t/x]. By

de�nition of |=, the assumption entails that there is an assignment h that only di�ers from g in what it

assigns to z such that notM, I, h |= B. De�ne an assignment j by j(z) = h(z) and j(v) = f(v) for all

v 6= z. Note the following.

(a) Because t is free for x in A, z does not occur in t. So because j di�ers from f only on the value of

z, it follows that Ij(t) = If (t) and because h(x) = g(x) it follows by de�nition of f and g that

Ij(t) = h(x).

73

(b) For all variables v 6= z and v 6= x, h(v) = g(v) = f(v) = j(v). And by de�nition of j, h(z) = j(z).

So for all v 6= x, h(v) = j(v)

Note that (a) and (b) mean that h and j are as required for the induction hypothesis. �us,M, I, h |= B

i� M, I, j |= B[t/x]. �us, as we have that not M, I, h |= B, it follows that not M, I, j |= B[t/x].

But by de�nition of j, j di�ers from f only on the value of z. So by de�nition of |=, this means that

M, I, f 6|= ∀z(B[t/x]), i.e. M, I, f 6|= A[t/z] by de�nition of substitution. �is was to show.

�e right-to-le� direction is analogous.

• �e cases where A = ⊥, A = B ∨ C , A = B ∧ C or A = B → C are analogous to the negation case.

�e case where A = ∃xB is analogous to the universal quanti�er case and the case where A = Rt0...tn

is analogous to the identity case.

�is concludes the induction.

With this lemma in place, we have basically covered the di�cult parts of the proof of Soundness.

We make a now familiar simplifying assumption. We have shown above that we may treat ∃xA as an

abbreviation of ¬∀x¬A and we have seen in �eorem 2.21 that we can treat ∧, ∨ and⊥ as abbreviations if

we adopt the following rules.

[A]i
.
.
.

B
(→I.)

i

A→ B
A→ B A

(→E.)

B
A→ B A→ ¬B

(NI) ¬A
¬¬A

(DNE)

A
A B

(E)

A

�is means that it su�ces to show the following to establish Soundness. Let L be a language, Γ be a set

of L-formulae and A be a L-formula such that A and all members of Γ do not contain the symbols ⊥, ∨,
∧ or ∃. Assume that Γ ` A by a proof involving only the rules (→I.), (→E.), (NI), (DNE), (E), (∀I.), (∀E.),
(≡R), (≡S), (≡T) and (≡Sub). �en show that Γ |= A. �is su�ces to show the full Soundness result, as

any proof in the full language using all rules can be rewri�en to a proof in the reduced language using the

reduced set of rules.

As was the case for the proof of the soundness of the propositional calculus, it is not necessary to use such

a reduction. �is is merely a convenience: fewer rules means we have to check fewer inductive steps in the

following proof.

Proof of �eorem 4.1. LetL be a language. Wewill prove the following by induction on the length of proofs:

For all sets of L-formulae Γ and all L-formulaeA: if Γ ` A by a proof of length n or less that involves only

the reduced set of rules, then Γ |= A.

• Base: Suppose that Γ ` A by a proof of length 1. �is time, we are in one of two cases.

– Case 1. A is a member of Γ. �en it is trivially the case that for all modelsM, f , if for allB ∈ Γ,

M, f |= B, then alsoM, f |= A, since A is itself a member of Γ. �us Γ |= A by de�nition of

semantic consequence.

74

– Case 2. �e proof is a single application of (≡R). �en A = t ≡ t for a term t. As then A is a

tautology, it follows that Γ |= A.

• Inductive step. IH: Assume that for a �xed but arbitrary n it is the case that for all Γ and A, if Γ ` A
with a proof of length n or less that involves only the reduced set of rules, then also Γ |= A.

It is to show that for all Γ and A where Γ ` A by a proof of length n + 1 or less that involves only

the reduced set of rules, it is the case that Γ |= A. So let Γ and A be arbitrary such that A follows

from Γ by a proof tree of length n+ 1 or less. If the length of the proof is n or less, we are done by

the induction hypothesis. So assume it has length n+ 1.

We can do a case distinction on the last step in the proof of A.

1. �e last step is (DNE). �en Γ ` ¬¬A by a proof of length n. So by the IH Γ |= ¬¬A. So for all

modelsM, I, f such thatM, I, f |= B for all B ∈ Γ, it is also the case thatM, I, f |= ¬¬A.

LetM, I, f be any such model. By de�nition of |=,M, I, f |= ¬¬A means that it is not the case

thatM, I, f |= ¬A. But this means that it is not the case that it is not the case thatM, I, f |= A.

But this just means that M, I, f |= A. As this goes for any M, I, f with M, I, f |= B for all

B ∈ Γ, it follows that Γ |= A by the de�nition of semantic consequence.

2. �e last step is (→I.). �en A = C → D for some formulae C and D and there is a proof of

length n showing that Γ ∪ {C} ` D. By the induction hypothesis, Γ ∪ {C} |= D. �at is, for

all modelsM, I, f such thatM, I, f |= B for all B ∈ Γ andM, I, f |= C , it is also the case that

M, I, f |= D.

LetM, I, f be any model such thatM, I, f |= B for all B ∈ Γ. We may distinguish two cases

– Case 1:M, I, f |= C . �en by the above,M, I, f |= D. �en by de�nition of |=, it is also the

case thatM, I, f |= C → D, i.e.M, I, f |= A.

– Case 2: it is not the case thatM, I, f |= C . �en by de�nition of |=, it is also the case that

M, I, f |= C → D, i.e.M, I, f |= A.

�usM, I, f |= A. As this goes for anyM, I, f withM, I, f |= B for all B ∈ Γ, it follows that

Γ |= A by the de�nition of semantic consequence.

3. �e last step is (→E.). �en there is a formula C and proofs of C from Γ and of C → A from

Γ. Both are shorter than the proof of A, so by the IH Γ |= C → A and Γ |= B. �at is, for all

modelsM, I, f such thatM, I, f |= B for all B ∈ Γ, it is also the case thatM, I, f |= C → A

andM, I, f |= C .

LetM, I, f be any suchmodel. By de�nition of |=,M, I, f |= C → Ameans that eitherM, I, f |=
A or it is not the case that M, I, f |= C . As it is the case that M, I, f |= C , it follows that

M, I, f |= A. As this goes for anyM, I, f withM, I, f |= B for all B ∈ Γ, it follows that Γ |= A

by the de�nition of semantic consequence.

75

4. �e last step is (NI). �en there is a C such that A = ¬C and there are proofs showing that for

someD, Γ ` C → D and Γ ` C → ¬D. Both are shorter than the proof ofA, so by the induction

hypothesis, Γ |= C → D and Γ |= C → ¬D. So for all modelsM, I, f such thatM, I, f |= B

for all B ∈ Γ, it is also the case thatM, I, f |= C → D and C → ¬D.

LetM, I, f be any such model. For reductio, assume that it is not the case thatM, I, f |= A. �en

M, I, f |= C . By de�nition of |=,M, I, f |= C → D means that eitherM, I, f |= D or it is not

the case that M, I, f |= C ; and M, I, f |= C → ¬D means that either M, I, f |= ¬D or it is

not the case thatM, I, f |= C . SinceM, I, f |= C by assumption, it follows thatM, I, f |= D

and M, I, f |= ¬D. But this is impossible by de�nition of |=. Contradiction. �us by reductio,

M, I, f |= A. As this goes for anyM, I, f withM, I, f |= B for all B ∈ Γ, it follows that Γ |= A

by the de�nition of semantic consequence.

5. �e last step is (E). �en there are proof trees showing that for some B, Γ ` A and Γ ` B. Both

are shorter than the proof of A we are considering in this step, so by the IH Γ |= A.

6. �e last step is (∀I.). �en there is aC and variables x and y such that: (i)A = ∀xC , (ii)Γ ` C[y/x]

by a proof of length n; (iii) y does not occur in premisses and undischarged assumptions of this

proof; (iv) y is not free in ∀xC . Let Γ0 ⊆ Γ be the set of premisses required for the proof ofC[y/x].

By the induction hypothesis, Γ0 |= C[y/x]. So for all modelsM, I, f such thatM, I, f |= B for

all B ∈ Γ0, it is also the case thatM, I, f |= C[y/x].

LetM, I, f one of these models. We need to show that for all g that di�er from f at most in what

is assigned to x, it is the case thatM, I, g |= C . So let g be an arbitrary such assignment.

Note that we cannot conclude thatM, I, g |= C[y/x] because we can’t know thatM, I, g models

all members of Γ0. Instead, we exploit the fact that y is not free in the premisses.

De�ne an assignment f ′ by f ′(y) = g(x) and f ′(v) = f(v) for all v 6= y. By (iii), y does not

occur free in any B ∈ Γ0, so the value assigned to y does not ma�er for their satisfaction. As for

all B ∈ Γ0 it is the case thatM, I, f |= B and f ′ di�ers from f only on the value of y, it follows

that M, I, f ′ |= B for all B ∈ Γ0. As Γ0 |= C[y/x], it follows by the de�nition of semantic

consequence thatM, I, f ′ |= C[y/x].

Remark: what we used here is the ‘arbitrariness’ we coded in the rule for universal introduction:

the assumptions of the proof don’t decide anything about the value of y, so we can assign anything

to y. We assign to y what g assigns to x. So we �nd a valuation that says that C[y/x] is true for y

having the value of g(x). �is almost says that g makes C true, but we need now to appeal to the

second thing we coded in the rule: that C[y/x] indeed expresses the same property as C .

Now, by (iv), we are in one of two cases: either y is not free in C or y = x.

– Case 1. y is not free in C . We may without loss of generality assume that y does not occur in

C at all (if it occurs bound, just rename), so that y is free for x in t.

76

De�ne an assignment g′ by g′(y) = g(x) and g′(v) = g(v) for all v 6= y. Note that for all

v 6= x, it is the case that g′(v) = f ′(v) because f ′ di�ers from f only on y and g′ di�ers from

f only on x and y. Because both g′(y) and f ′(y) are de�ned to be equal to g(x), they only

di�er on x. But we know that g′(x) = g(x) and g(x) = f ′(y), so g′(x) = f ′(y), which we

can also write as g′(x) = If
′
(y).

So we have that y is free for x in C , that g′(x) = If
′
(y) and that g′(v) = f ′(v) for all

v 6= x. �us we can apply the Substitution Lemma to conclude fromM, I, f ′ |= C[y/x] that

M, I, g′ |= C . Because y is not free in C , the value of y does not ma�er for the satisfaction

of C . So because g only di�ers from g′ in what is assigned to y, it follows thatM, I, g |= C .

– Case 2. y = x. �en C[y/x] = C and f ′ = g, soM, I, g |= C .

In either casewe conclude thatM, I, g |= C . As gwas arbitrarywith the property of di�ering from

f at most in the value of x, it follows thatM, I, f |= ∀xC . AsM, I, f was arbitrary, Γ0 |= ∀xC ,
i.e. Γ0 |= A.

Now consider any modelM, I, g of all members of Γ. �en in particularM, I, g is also a model

of all members of Γ0. �usM, I, g |= A. AsM, I, g was arbitrary, Γ |= A.

7. �e last step is (∀E.). �en there is a formula C , a term t and a variable x such that A = C[t/x]

and there is a shorter proof of A = ∀xC . Without loss of generality we may assume that t is

free for x in C (otherwise we just need to rename some bound variables in C). By the induction

hypothesis, Γ |= ∀xC . LetM, I, f be an arbitrary model of all members of Γ, soM, I, f |= ∀xC .
�en, by de�nition of |=, for all assignment functions f ′ that di�er from f at most in what they

assign to x,M, I, f ′ |= C .

De�ne an assignment function g by g(x) = If (t) and g(v) = f(v) for all v 6= x. Note that

g di�ers from f at most in what it assigns to x, so M, I, g |= C . By the Substitution Lemma,

it follows that M, I, f |= C[t/x]. As M, I, f was arbitrary, it follows by de�nition of semantic

consequence that Γ |= C[t/x].

8. �e last step is (≡S). �en there are terms t0 and t1 such that A = t1 ≡ t0 and there is a shorter

proof of t0 ≡ t1. LetM, I, f be an arbitrary model of all members of Γ. By the induction hypo-

thesis, M, I, f |= t0 ≡ t1, so by de�nition of |=, If (t0) = If (t1). �en also by de�nition of |=,

M, I, f |= t1 ≡ t0, i.e.M, I, f |= A. AsM, I, f was arbitrary, Γ |= A.

9. �e last step is (≡T). �en there are terms t0, t1 and t1 such that A = t0 ≡ t2 and there are

shorter proofs of t0 ≡ t1 and t1 ≡ t2. Let M, I, f be an arbitrary model of all members of Γ.

By the induction hypothesis, M, I, f |= t0 ≡ t1 and M, I, f |= t1 ≡ t2, so by de�nition of |=,

If (t0) = If (t1) and I
f (t1) = If (t2), so I

f (t0) = If (t2). �us by de�nition of |=, M, I, f |=
t0 ≡ t2, i.e.M, I, f |= A. AsM, I, f was arbitrary, Γ |= A.

10. �e last step is (≡Sub). �en there are terms t0 and t1, a variable x and a formula B such that

A = B[t1/x] and shorter proofs of t0 ≡ t1 and B[t0/x]. Let M, I, f be an arbitrary model of

77

all members of Γ. By the induction hypothesis, M, I, f |= t0 ≡ t1 and M, I, f |= B[t0/x]. In

particular, this means that If (t0) = If (t1).

De�ne an assignment function g by g(x) = If (t0) and g(v) = f(v) for all v 6= x. By the

Substitution Lemma, M, I, g |= B i� M, I, f |= B[t0/x]. Note that g(x) = If (t1), so by the

Substitution Lemma, it is also the case thatM, I, g |= B i�M, I, f |= B[t1/x]. �us,M, I, f |=
B[t0/x] i� M, I, f |= B[t1x]. And since the le�-hand-side is true by the induction hypothesis,

M, I, f |= B[t1/x]. AsM, I, f was arbitrary, Γ |= B[t1/x].

We have covered all cases, thus if Γ ` A by a proof of length n+ 1, then Γ |= A.

�is concludes the induction.

5 Completeness for Predicate Logic

�eorem 5.1 (Completeness of the First Order Predicate Calculus). Let L be a language, Γ be a set of

L-formulae and A be a L-formula. If Γ |= A then Γ ` A.

Our strategy for proving this will be the same as in the propositional logic case. If we can show that

every consistent set Γ is satis�able, the completeness result follows. We can show that a consistent set is

satis�able by extending it to a maximally consistent set and then de�ning a model by the atomic formulae

contained in the maximal set.

Henkin’s Method

To prove completeness of some calculus with respect to some model theory:

1. Show that if every consistent set of formulae is satis�able, completeness follows.

2. Show that every consistent set of formulae Γ is satis�able by formalising a procedure that extends
any consistent Γ to a set Γ̂ that contains su�cient syntactic information to build a model out of

syntax.

�is isn’t quite a proof method as we have seen so far (it is more vague than this). But it is a generally

applicable recipe for proving completeness in basically any logic. For propositional logic, we saw that

‘su�cient syntactic information’ was provided by maximally consistent sets that ‘decided’ all the atoms

(syntactically!). For predicate logic we need a li�le bit more cleverness.

5.1 Term Models

In propositional logic, all we needed was a valuation. We were able to obtain one by assigning the value

1 to all atoms in the maximally consistent extension. But in the predicate logic case, we need a structure

consisting of a domain things and an interpretation of the language. Where would we take the domain

from, when all we have is a set of formulae?

If all we have are terms and sentences, then the model must come from them. Our one and only choice

is this: let the terms themselves form the things in the domain. Recall that for arithmetic, we had in the

78

standard interpretation that the number n is denoted by the term sn0 (i.e. the nth successor of 0). In the

language containing only the constant symbol 0 and the successor function s, we can de�ne a term model

as follows.

• Let the domainM be the set of all terms formed from 0 and s.

• I(0) = 0 (both occurrences of 0 are the symbol, not the number);

• De�ne the function I(s) : M →M by I(s)(t) = sat;

• De�ne an assignment f as f(x) = x (as any variable is a term).

It is very straightforward to see that in this construction I(t) = t for all terms. So in these constructions,

the terms do double duty: they are syntactic objects in our language, but they also are the domain elements

for the model we are constructing. (�is has a whi� of formalism, the idea that mathematics can be done

only by manipulating symbols, without bringing in anything that carries meaning beyond the symbols.)

We want to do this, or something similar, for any consistent set of formulae in any language. �e following

de�nition will help us.

De�nition 49. Let L be a language.

• A set Γ of L-formulae is said to contain witnesses i�Def for all formulae of the form ∀xA, there is
a constant symbol cA in the language such that if ¬∀xA ∈ Γ, then also ¬A[cA/x] ∈ Γ.

• A set Γ is called a Henkin extension in L i�Def it contains witnesses and is maximally consistent.

Containing witnesses means that if, according to Γ, there is a counterexample to an universally quanti�ed

claim, then there is also a name of a counterexample (a ‘witness’). An equivalent and perhaps more obvious

de�nition is that Γ contains witnesses i� whenever Γ contains ∃xA, it also contains A[cA/x]. (We are not

de�ning it like this because we will again treat ∃ as an abbreviation in the main argument.)

Remark: O�entimes Γ is said to contains witnesses i� for all A, Γ contains the formula ∃xA→ A[cA/x],

regardless of whether Γ contains a quanti�ed statement saying that there should be a witness for A. �e

way presented here allows for a simpli�ed argument below (�eorem 5.7).

�e witnesses are important for the following reason. We want to show that every Henkin extension is

satis�able by constructing a model with a domain constructed from the terms. If we have a consistent set

that does not contain witnesses, it could be that it contains an existential statement ∃xA, but there is no
name for something that makesA true, i.e. no term in the language that makesA[t/x] true. �enwe cannot

ensure that ∃xA is true in models with domains constructed from terms. Having witnesses ensures that

this is not the case.

As in the propositional logic case, maximally consistent sets of formulae are deductively closed.

�eorem 5.2. Let L be a language and let Γ be a Henkin extension. �en for all A, if Γ ` A, then A ∈ Γ.

Proof. Let L be a language and Γ be an arbitrary Henkin extension in L. Let A be an arbitrary formula

such that Γ ` A. Towards a reductio, assume that A /∈ Γ. Because Γ is maximally consistent, this means

79

that Γ ∪ {A} is inconsistent, i.e. Γ ∪ {A} ` ⊥. �is means that by (¬I.), Γ ` ¬A. But because also Γ ` A,
this means by (¬E.) that Γ ` ⊥. Contradiction to the assumption that Γ is maximally consistent. �us, by

reductio, A ∈ Γ.

�e witnesses ensure that we have enough terms. We also need something parallel to ensure that we do

not have too many terms in the domain of the term model. Unlike in the example above, we cannot just

take the set of all terms to be the domain. �is is because we might have two terms t and s that are not

identical, but must receive the same interpretation because t ≡ s is a member of Γ. For example, in the

language of arithmetic, s0 and +s00 are distinct terms, but s0 ≡ +s00 is consistent with, say, the Robinson

axioms. But if s0 and +s00 are distinct members of the domain, then I(s0) = s0 and I(+s00) = +s00, so

I(s0) 6= I(+s00), hence s0 ≡ +s00 will not come out as true in any such term model. �e construction

in the following theorem takes care of this issue.

We will avoid this issue as follows. Let L be a language and Γ be a Henkin extension in L.

For every L-term t consider the set [t] = {s ∈ Tm(L) | t ≡ s ∈ Γ}. First show that for terms t and t′ , if

t ≡ t′ ∈ Γ, then [t] = [t′].

Proof. Two sets are equal if they contain the same members, so we assume t ≡ t′ ∈ Γ and show that all

members of [t] are members of [t′] and vice versa.

• Let s ∈ [t] be arbitrary. �is means that t ≡ s ∈ Γ. Note that also t ≡ t′ ∈ Γ, so by (≡S), Γ ` t′ ≡ t.
Note that by (≡T), t′ ≡ t, t ≡ s ` t′ ≡ s, so Γ ` t′ ≡ s. Because Γ is deductively closed, t′ ≡ s ∈ Γ.

�us s ∈ [t′].

• Let s ∈ [t′] be arbitrary. �is means that t′ ≡ s ∈ Γ. Note that also t ≡ t′ ∈ Γ, so by (≡T), Γ ` t ≡ s.
Because Γ is deductively closed, t ≡ s ∈ Γ. �us s ∈ [t].

�us [t] = [t′]. (Mathematically, what we have exploited here is that t ≡ t′ ∈ Γ de�nes an equivalence
relation on the terms and the sets [t] are equivalence classes.)

With this in place, we may de�ne our term modelM, I, f as follows.

• M = {[t] | t ∈ Tm(L)}.

• If v is a variable, f(v) = [v];

• If c is a constant symbol, I(c) = [c];

• If F is an n-ary function symbol, I(F) : Mn →M is the function de�ned as follows:

I(F)([t0], ..., [tn−1]) = [Ft0...tn−1];

• If R is an n-ary relation symbol, I(R) : Mn → {0, 1} is the function de�ned as follows:

I(R)([t0], ..., [tn−1]) = 1 i� Rt0...tn−1 ∈ Γ.

Note that we are multiply-mentioning members in the de�nition ofM , but this is harmless.

However, there is a potential for something to go wrong in this de�nition. We have de�ned the function

I(F) by saying that I(F)([t0], ..., [tn−1] = [Ft0...tn−1], but suppose that we have terms t′0, ..., t
′
n−1 such

80

that for all i < n, [ti] = [t′i]. �en I(F)([t0], ..., [tn−1]) and I(F)([t′0], ..., [t
′
n−1]) are the same function

I(F) applied to the same exact arguments as [ti] and [t′i] are just di�erent ways of picking out the same

member ofM . So the result ought to be the same, i.e. it must be the case that [Ft0...tn−1] = [Ft′0...t
′
n−1].

If this is not the case, then we have failed to de�ne I(F) to be a function (in mathematics, one would say

that our de�nition was not well-de�ned). So we should prove that for all n-ary function symbols F and

terms t0, .., tn−1, t
′
0, ..., t

′
n−1 such that [t0] = [t′0], …, [tn−1] = [t′n−1] it is the case that [Ft0...tn−1] =

[Ft′0...F t
′
n−1].

Proof. To show that [Ft0...tn−1] = [Ft′0...F t
′
n−1] we show that Ft0...tn−1 ≡ Ft′0...F t′n−1 ∈ Γ. Recall the

derived rule (≡Sub*).

t0 ≡ s0 t1 ≡ s1 . . . tn−1 ≡ sn−1 A[t0, t1, ..., tn−1/x0, x1, ..., xn−1]
(≡Sub*)

A[s0, s1, ..., sn−1/x0, x1, ..., xn−1]

Let x0, ..., xn−1 be variable symbols and let A = Ft0...tn−1 ≡ Fx0...xn−1. It is the case that:

1. Ft0...tn−1 ≡ Ft0...tn−1 = A[t1, ..., tn−1/x0, ..., xn−1]; and

2. Ft0...tn−1 ≡ Ft′0...t′n−1 = A[t′1, ..., t
′
n−1/x0, ..., xn−1].

Note that by (≡R), Γ ` Ft0...tn−1 ≡ Ft0...tn−1, i.e. Γ ` A[t1, ..., tn−1/x0, ..., xn−1] by (1). Also note that

from [t0] = [t′0], …, [tn−1] = [t′n−1] it follows that for all i < n, Γ ` ti ≡ t′i. �us we have all premisses

of (≡Sub*), so Γ ` A[t′1, ..., t
′
n−1/x0, ..., xn−1]. But by (2), this means that Γ ` Ft0...tn−1 ≡ Ft′0...t

′
n−1.

Because Γ is deductively closed, Ft0...tn−1 ≡ Ft′0...t′n−1 ∈ Γ. �is was to show.

�e same problem occurs for the de�nition of I(R) for relation symbolsR, but the proof that nothing goes

wrong is analogous to the one for the function symbols. �is means we have succeeded at de�ning a model.

De�nition 50. Let L be a language and Γ be a Henkin extension in L. �e modelM, I, f de�ned above

is called the term model of Γ.

Remark: the term model does not have to correspond to the intended interpretation. Over a language that

contains countably many symbols, we will have a countable termmodel, but some intended interpretations

(e.g. of the language of set theory or of the language of calculus) are larger than countable. We will go into

a li�le bit more detail on this later.

We can now prove the most important step for applying Henkin’s method to predicate logic.

�eorem 5.3. Let L be a language, Γ be a Henkin extension in L andM, I, f be the term model of Γ. �en

for all L-formulae A:

M, I, f |= A i� A ∈ Γ.

We will use a slightly stronger induction technique for this (this helps with substitutions).

81

De�nition 51 (Rank of a Formula). Let L be a language. De�ne a function rk : wff(L)→ N by recursion

on the construction of the formulae.

• Base cases:

– For all terms t0 and t1, rk(t0 ≡ t1) = 0.

– For all n-ary relation symbols R and terms t0, ..., tn−1, rk(Rt0, ..., tn−1) = 0

– rk(⊥) = 0.

• Recursive steps:

– rk(¬B) = rk(B) + 1.

– rk(B ∨ C) = max(rk(B), rk(C)) + 1.

– rk(B ∧ C) = max(rk(B), rk(C)) + 1.

– rk(B → C) = max(rk(B), rk(C)) + 1.

– rk(∀xB) = rk(B) + 1.

– rk(∃xB) = rk(B) + 1.

Intuitively, the rank of a formula is how ‘deep’ the longest embedding of operators goes. As the rank is just

a natural number, we can do an induction on the rank.

Rank Induction

To prove that all formulae A numbers have property P , it su�ces to show the following:

• Base case: Show that all formulae of rank 0 have property P .

• Inductive step: Assume that for a �xed but arbitrary n it is the case that all formulae of rank n or

less have the property P (this is the Induction Hypothesis). Using this assumption, show that all

formulae of rank n+ 1 have the property P .

We can prove the e�ectiveness of Rank Induction either by our usual means of using minimal counter-

example or we can observe that it is just a special case of Mathematical Induction on the natural numbers.

We are now ready to prove the above theorem.

Proof. Let L be a language, Γ be a Henkin extension in L andM, I, f be the term model of Γ.

First prove by induction over the construction of terms that for all terms t, it is the case that If (t) = [t]

• Base 1. If t = v is a variable symbol, then If (t) = f(v) = [v] by de�nition of f .

• Base 2. If t = c is a constant symbol, then If (t) = I(c) = [c] by de�nition of I .

• Inductive step. Assume t = Ft0...tn−1 for an n-ary function symbol F and terms t0, ..., tn−1. Induc-

tion hypothesis: for all i < n, If (ti) = [ti]. Show that If (t) = [t].

By the de�nition of interpretation, If (t) = I(F)(If (t0), ..., I
f (tn−1)). By the induction hypothesis,

this is equal to I(F)([t0], ..., [tn−1]). By the de�nition of I , this is equal to [Ft0...tn−1], which is [t].

�us If (t) = [t], which was to show.

82

Now, show the following by Rank Induction on the formulae in L.

For all A, it is the case thatM, I, f |= A i� A ∈ Γ.

To keep the proof short, we will only treat the base cases and the inductive steps for ¬,→ and ∀ and tacitly
assume we have abbreviated everything else.

• Base. Show for all formulae A of rank 0 thatM, I, f |= A i� A ∈ Γ. �ere are three cases.

– Case 1. A = t0 ≡ t1 for terms t0, t1.

If M, I, f |= t0 ≡ t1, then by de�nition of |=, it is the case that If (t0) = If (t1), which by the

above means that [t0] = [t1]. But this means that t0 ≡ t1 ∈ Γ.

Conversely, if t0 ≡ t1 ∈ Γ, then [t0] = [t1], so I
f (t0) = If (t1), henceM, I, f |= t0 ≡ t1.

– Case 2. A = Rt0...tn−1 for a an n-ary relation symbol R and terms t0, ..., tn−1.

IfM, I, f |= Rt0...tn−1, then I(R)(If (t0), ..., I
f (tn−1)) = 1 by de�nition of |=. By the above, this

means that I(R)([t0], ..., [tn−1]) = 1. By de�nition of I , this means that Rt0...tn−1 ∈ Γ.

Conversely, ifRt0...tn−1 ∈ Γ, by de�nition of I , it is the case that I(R)([t0], ..., [tn−1]) = 1. By the

above, then I(R)(If (t0), ..., I
f (tn−1)) = 1 and by de�nition of |= this means thatM, I, f |= A.

– Case 3. A = ⊥. By de�nition of |=, it not the case thatM, I, f |= ⊥. And because Γ is consistent,

⊥ /∈ Γ. �us it is the case thatM, I, f |= ⊥ i� ⊥ ∈ Γ because both are false.

In all cases, we conclude what is to show.

• Inductive step. Let n be �xed but arbitrary. Induction hypothesis: for all formulae B of rank n or less it

is the case that:M, I, f |= B i� B ∈ Γ. Show that for all formulae A of rank n + 1, it is the case that

M, I, f |= A i� A ∈ Γ.

We distinguish three cases: there is someB such thatA = ¬B; there areB andC such thatA = B → C ;

and there are B and x such that A = ∀xB. Note that in all cases, the rank of B (and C) is n or less by

de�nition of rk.

– Case 1. A = ¬B for some formula B. IfM, I, f |= ¬B, then by de�nition of |=, it is not the case

thatM, I, f |= B. �e rank of B is n or less, so by the contrapositive of the IH, B /∈ Γ. Because Γ

is maximally consistent, this means that B is inconsistent with Γ, i.e. Γ ∪ {B} ` ⊥. By (¬I.), this
means that Γ ` ¬B and because Γ is deductively closed, hence ¬B ∈ Γ, i.e. A ∈ Γ.

Conversely, if ¬B ∈ Γ then because Γ is consistent, B /∈ Γ (otherwise we can derive ⊥ from

Γ by (¬E)). �e rank of B is n or less, so by the contrapositive of the IH, it is not the case that

M, I, f |= B. By de�nition of |=, this means thatM, I, f |= ¬B.

– Case 2. A = B → C for some formulae B and C . Show thatM, I, f |= B → C i� B → C ∈ Γ.

IfM, I, f |= B → C then by de�nition of |=, either notM, I, f |= B orM, I, f |= C .

83

∗ Case 2.1. not M, I, f |= B. �en by the contrapositive of the IH, B /∈ Γ. Because Γ is

maximally consistent, Γ ∪ {B} ` ⊥, so by (¬I.), Γ ` ¬B hence because Γ is deductively

closed, ¬B ∈ Γ. By (RAA) with an empty discharge it follows that Γ ` B → C . Or, to give

some detail the following is a proof from Γ.

¬B [B]1
(¬E.)

⊥ [¬C]2
(∧I.)

⊥ ∧ ¬C
(∧E.1)⊥

(RAA)
2

C
(→I.)

1

B → C

�us Γ ` B → C , hence because Γ is deductively closed, B → C ∈ Γ.

∗ Case 2.2. M, I, f |= C . �en by the IH, C ∈ Γ. �en the following is a proof from Γ.

C [B]1
(∧I.)

C ∧B
(∧E.1)

C
(→I.)

1

B → C

�us Γ ` B → C , hence because Γ is deductively closed, B → C ∈ Γ.

In both cases, B → C ∈ Γ, which was to show.

Conversely, assumeB → C ∈ Γ and show thatM, I, f |= B → C . Towards a reductio, assume that

notM, I, f |= B → C . By de�ntion of |=, this means thatM, I, f |= B and notM, I, f |= C . By

the IH for B and the contrapositive of the IH for C , then B ∈ Γ and C /∈ Γ. But From B → C ∈ Γ

and B ∈ Γ it follows by (→E.) that Γ ` C . As Γ is deductively closed, C ∈ Γ, contradiction to

C /∈ Γ. �us by reductio,M, I, f |= B → C .

– Case 3. A = ∀xB for a formula B and a variable x. Show thatM, I, f |= ∀xB i� ∀xB ∈ Γ. Show

the contraposition of this, i.e. notM, I, f |= ∀xB i� not ∀xB ∈ Γ

Le�-to-right. Assume notM, I, f |= ∀xB. �en, by de�nition of |=, there is an assignment function

g that di�ers from f at most in what it assigns to x such that not M, I, g |= B. We know that

g(x) ∈ M , so there is a term t such that g(x) = [t], which means that g(x) = If (t). By the

Substitution Lemma, not M, I, f |= B[t/x]. By the IH, B[t/x] /∈ Γ. �en, assume for reductio

that ∀xB ∈ Γ. By (∀E), this means that Γ ` B[t/x], which contradicts that B[t/x] /∈ Γ. �us, by

reductio, ∀xB /∈ Γ. �is was to show.

Right-to-le�. If not ∀xB ∈ Γ, then Γ ∪ {∀xB} ` ⊥ as Γ is maximally consistent. By the usual

argument (cf. the step for negation), Γ ` ¬∀xB, so as Γ is deductively closed ¬∀xB ∈ Γ. As Γ

contains witnesses, this means that ¬B[cB/x] ∈ Γ. �us, B[cB/x] /∈ Γ (as otherwise Γ would be

inconsistent). �e formulaB[cB/x] has lower complexity thanA, so by the IH, it is not the case that

M, I, f |= B[cB/x]. De�ne an assignment g by g(x) = If (cB) and g(v) = f(v) for all variables

v 6= x. By the contrapositive of the Substitution Lemma, notM, I, g |= B. Because g di�ers from

84

f at most in what it assigns to x, by de�nition of |=, it follows that notM, I, g |= ∀xB, which was

to show.

Remark: �e uses of the Substitution Lemma here are why we use Rank Induction. B[t/x] may

be di�erent from B so with an induction on construction, we could not use the IH; because t may

be very long, we also cannot use induction on the length of a formula. But the rank ofB[t/x] is the

same as the rank of B (and thus less than the rank of A) regardless of what t is.

We have covered all cases and concluded in each what was to show.

�is concludes the induction.

We can immediately conclude the following.

�eorem 5.4. Let L be a language and Γ be a Henkin extension in L. �en Γ is satis�able.

Proof. Let L be a language and Γ be a Henkin extension in L. LetM, I, f be the term model for Γ. By the

previous theorem, for all A ∈ Γ, it is the case thatM, I, f |= A. �usM, I, f satis�es Γ.

Now to prove completeness, we need to �nd a way to extend each consistent set Γ to a Henkin extension

Γ̂ with Γ̂ ⊇ Γ.

5.2 Finding Henkin Extensions

We will use the following result without proof.

Fact 5.5. Let L be a language and Γ be a consistent set of formulae. �en there is a maximally consistent set

Γ′ such that Γ ⊆ Γ′.

For countable languages L, wff(L) is countable, so for such languages we can do this as in propositional

logic. However, this is not in general the case anymore (e.g. we could have a language with more than

countably many constant symbols and then get more than countably many w�s). In the propositional case,

we used the Axiom of Countable Choice to enumerate the formulae and then stepwise decide whether the

n-th formulae can be added consistently to Γ. Here, we can do the same thing, but we need the full Axiom

of Choice and an advanced induction method called trans�nite induction. Equivalently, we may use Zorn’s

Lemma (which is equivalent to the Axiom of Choice and proven from it by trans�nite induction).

�en we can start constructing a Henkin extension by the following recursion on the natural numbers. Fix

some language L and a consistent set Γ of L-formulae. We de�ne for each natural number n a language

Ln = 〈Cn,Fn,Rn〉 and a set Γn of formulae in Ln.

• Base case. L0 = L and Γ0 = Γ.

• Recursive step. Assume we have de�ned Ln and Γn.

85

For each A ∈ Ln let cA be a symbol not used in Ln and de�ne Ln+1 = 〈Cn+1,Fn+1,Rn+1〉 as
follows:

Cn+1 = C ∪ {cA | A ∈ wff(Ln)},Fn+1 = Fn, andRn+1 = Rn.

Let Γn+1 ⊆ wff(Ln+1) be a maximally consistent superset of the following set:

Γn ∪ {¬A[cA/x] | A ∈ wff(Ln) and x ∈ V and ¬∀xA ∈ Γn}.

It is not obvious that we can de�ne such a recursion. To be able to just ‘let’ Γn+1 be as desired, we need

to prove for every n that such a maximally consistent Γn+1 exist. We do so by proving that that for all n,

Γn ∪ {¬A[cA/x] | A ∈ wff(Ln) and x ∈ V and ¬∀xA ∈ Γn} is consistent and then applying the Fact.

�e proof will be sketched, not working out in detail some proof trees and using an ‘iteration’ where

formally there would be an induction.

First, we need a small lemma.

Lemma 5.6. Let Γ be a set of formulae and A be a formula. Let c be a constant not occurring in Γ or A and

x be a variable not occurring anywhere in Γ. If Γ ` A[c/x], then Γ ` ∀xA.

Proof. If Γ ` A[c/x] and c does not occur in Γ, then we can replace everywhere in the proof c by x and

the proof is still valid and we haven’t changed Γ. (Formally, we would do this by induction on the length

of proofs, but it is obvious enough.)

�en we have shown that Γ ` A and as by assumption x does not occur free in Γ, it follows by (∀I.) that
Γ ` ∀xA.

�eorem 5.7. Suppose Γn is a consistent set of formulae in the languageLn. �en the following is a consistent

set of formulae in the language Ln+1.

Γn ∪ {¬A[cA/x] | A ∈ wff(Ln) and x ∈ V and ¬∀xA ∈ Γn}.

Proof. Show the contrapositive of the theorem.

Assume that Γn ∪ {¬A[cA/x] | A ∈ wff(Ln) and x ∈ V and ¬∀xA ∈ Γn} ` ⊥.

Since proofs are �nite, there is a �nite Γ′ ⊆ Γn and �nitely many variables x0, ..., xn−1 and Ln-formulas

A0, ..., An−1 such that for all i < n, ¬∀xiAi ∈ Γn and Γ′ ∪ {¬Ai[cAi/xi] | i < n} ` ⊥.

We may assume that for all i < n, ¬∀xAi ∈ Γ′, as adding �nitely many formulae to Γ′ does not change

anything.

�en proceed as follows.

• By (RAA), Γ′ ∪ {¬Ai[cAi/xi] | i < n− 1} ` An−1[cAn−1/xn−1].

86

• Because only �nitely many variables can occur throughout this proof, we can pick an unused variable

y and let B = An−1[y/xn−1].

• It follows that Γ′ ∪ {¬Ai[cAi/xi] | i < n− 1} ` B[cAn−1/y]

• By the lemma, Γ′ ∪ {¬Ai[cAi/xi] | i < n− 1} ` ∀yB.

• We can now ‘rename’ y to xn−1 in ∀yB to obtain Γ′ ∪ {¬Ai[cAi/xi] | i < n− 1} ` ∀xn−1An−1.

‘Renaming’ goes as follows: ∀yB ` B[y/y] by (∀E.); butB[y/y] = B by the de�nition of Substitution

andB = An−1[y/xn−1] by de�nition ofB. �us ∀yB ` An−1[y/xn−1]. But because y does not occur
in An−1 or premisses, by (∀I.), it follows that ∀yB ` ∀xn−1An−1.

(Remark: the previous Lemma provides that if we have an unused constant symbol, we get to in-

troduce a universal quanti�er. But we cannot guarantee that xn−1 does not occur in premisses, so to

use the Lemma, we must replace xn−1 with an unused y, apply the Lemma, and then replace y with

xn−1 again. �is is just some rewriting of formulae to make things the way we need them to be and

there is no good ‘intuitive’ description of what is going on beyond this.)

• But ¬∀xn−1An−1 ∈ Γ′, thus Γ′ ∪ {¬Ai[cAi/xi] | i < n− 1} ` ⊥ by (¬E.).

Iterate this process n times (formally, do an induction), each time ge�ing rid of one premiss. Conclude:

• Γ′ ` ⊥.

�us Γn ` ⊥, since Γ′ ⊆ Γn. �is was to show.

�e theorem ensures that the induction to de�ne Ln and Γn works.

Now de�ne Γ̂ =
⋃
n∈N Γn and L̂ = 〈Ĉ, F̂ , R̂〉 by Ĉ =

⋃
n∈N Cn, F̂ = F0 and R̂ = R0.

�eorem 5.8. Γ̂ is maximally consistent and contains witnesses (i.e. a Henkin extension).

Proof. First show that Γ̂ is consistent. Towards a reductio assume it is not. �en, because proofs are �nite,

there is a �nite subset Γ′ ⊆ Γ̂ such that Γ′ ` ⊥. For eachA ∈ Γ′ let nA be the smallest n such thatA ∈ Γn.

Let n be the maximum of {nA | A ∈ Γ′}. �en Γ′ ⊆ Γn. But this means that Γn ` ⊥ so Γn is inconsistent,

which contradicts the previous result. By reductio, Γ̂ is consistent.

Second show that Γ̂ is maximally consistent. Towards a reductio assume that it is not. �en there is some

L̂-formula A /∈ Γ̂ such that Γ̂ ∪ {A} is consistent. For each constant symbol c in A let nc be the smallest

n such that c ∈ Cn. Let n be the maximum of {nc | c occurs in A}. �en A is a formula in Ln. Because
A /∈ Γ̂ it must be the case that A /∈ Γn. But Γn is maximally consistent, so Γn ∪ {A} ` ⊥. Hence also
Γ̂ ∪ {A} ` ⊥. Contradiction to Γ̂ being consistent. By reductio, Γ̂ is maximally consistent.

�ird show that Γ̂ contains witnesses. Let x be an arbitrary variable and A be an arbitrary L̂-formula such

that ¬∀xA ∈ Γ̂. Because ¬∀xA ∈ Γ̂ and Γ̂ =
⋃
n∈N Γn, there is some n such that ¬∀xA ∈ Γn. By

construction of Γn+1, there is a cA ∈ Cn+1 such that ¬A[cA/x] ∈ Γn+1. Since Γn+1 ⊆ Γ̂, it follows that

¬A[cA/x] ∈ Γ̂. As x and A were arbitrary, it follows that for all x and A, if ¬∀xA ∈ Γ̂, there is a constant

symbol cA such that ¬A[cA/x] ∈ Γ̂. �us Γ̂ contains witnesses.

87

We call Γ̂ the Henkin extension of Γ. Now it only remains to put everything together.

5.3 Proof of Completeness

�eorem 5.9 (Henkin’s Model Existence �eorem). Let L be a language and Γ be a consistent set of L-
formulae. �en there is a modelM, I, f such thatM, I, f |= B for all B ∈ Γ.

Proof. Let L = 〈C,F ,R, α〉 be a language and Γ be a consistent set of L-formulae. By the construction

and results of the previous section, there is a language L̂ and a set Γ̂ of L̂-formulae such that Γ ⊆ Γ̂ and Γ̂

is a Henkin extension. LetM, I, f be the term model of Γ̂. By �eorem 5.3,M, I, f |= B for all B ∈ Γ̂.

Now de�ne a L-modelM ′, I ′, f ′ as follows.

• M ′ = M ;

• for all constant symbols c ∈ C, I ′(c) = I(c);

• for all function symbols F ∈ F , I ′(F) = I(F);

• for all relation symbols R ∈ R, I ′(R) = I(R);

• f ′ = f .

Now let A ∈ Γ. Because also A ∈ Γ̂, M, I, f |= A. But since by de�nition of |=, this only depends on

how I interprets the symbols in L,M ′, I ′, f ′ |= A. (To make this entirely proper, this could be shown by

a simple induction on the construction of A.) As this goes for all A ∈ Γ, Γ is satis�able.

Completeness follows immediately.

Proof of Completeness from Model Existence. Towards a reductio assume that there is a set Γ and formula A

such that Γ |= A and Γ 6` A.

If Γ 6` A, then Γ ∪ {¬A} is consistent (as if Γ ∪ {¬A} is inconsistent, then Γ ` A by (RAA)). �us by the

Model Existence�eorem, there is a modelM, I, f such thatM, I, f |= B for allB ∈ Γ andM, I, f |= ¬A.
�e la�er means that notM, I, f |= A by de�nition of |=. But by de�nition of semantic consequence, this

means it is not the case that Γ |= A. Contradiction to our assumption. �us by reductio, Γ ` A.

Note however that the proof of completeness is non-constructive. It tells you that there is a proof, but not

what the proof is. �e chances are slim of being able to extract an explicit proof of A from Γ |= A and

Henkin’s construction. Note how we have used multiple language extensions and some non-constructive

techniques with the Axiom of Choice that we cannot ‘unroll’.

However, we are not in general interested in extracting such proofs. As already mentioned, �nding a proof

is typically easier than checking truth in all models—and now we don’t even have a coinciding valuations

theorem to help us with the la�er. �us we can rest assured that if we go the (comparatively) ‘easy’ way

of �nding proofs, we are not missing any semantic consequences. Besides this practical bene�t, the Com-

pleteness theorem entails the Compactness theorem, which is extremely useful in its own right.

88

6 Compactness and the Löwenheim-Skolem�eorems

6.1 First Order �eories

From the perspective of our meta-language, we can look at an object language L and speak of its intended

interpretation. But it would be desirable to �x the meaning of the object language from within it, i.e. we

would like to specify the meaning of, say, the function symbol ‘+’, by writing down an object language

sentence involving ‘+’ so that whenever the sentence is true, ‘+’ has the right meaning. We can (at least

approximate) the meaning of a language in theories.

De�nition 52. Let L be a language. A L-formula A is called closed if it has no free variables (closed

formulae are also called sentences). A set of closed formulae in L is a theory in L.

For example, the set of Robinson Axioms is a theory. It is called Robinson Arithmetic and is typically denoted

by the le�erQ. Robinson Arithmetic gets many facts about the meaning of the language of arithmetic right,

but also leaves many aspects underspeci�ed. For example, recall the Robinson axioms for addition.

∀x(x+ 0 ≡ x) and ∀x∀y(x+ sy ≡ s(x+ y)).

�is already goes somewhere. For example, for all natural numbers n and m, sn0 + sm0 ≡ sm0 + sn0

is true in every model of Q. So, it is tempting to conclude, Q expresses in the object language that addi-

tion is commutative. But this is not quite right, as there are models of Q in which it is not the case that

∀x∀y(+xy ≡ +yx). �e following structureM, I is an example.

• M = N ∪ {♥,♣}.

• I(0) = 0.

• I(s)(n) = n+ 1, I(s)(♥) = ♣ and I(s)(♣) = ♥.

• I(+) is de�ned by the following table. (where n andm are members of N).

I(+) n ♥ ♣
m m+ n ♣ ♥
♥ ♥ ♣ ♥
♣ ♣ ♣ ♥

�at is, for actual numbers n, m, I(+) is as the intended interpretation, but for the ‘deviant’ ele-

ments ♥ and ♣, we interpret + such that is the case that I(+)(m,♥) = ♣, I(+)(m,♣) = ♥; and
I(+)(♥, n) = ♥, I(+)(♥,♥) = ♣ etc.

• See below for an interpretation of ·.

Let f be any assignment. It is easy to check thatM, I, f |= (∀x(x+ 0 ≡ x))∧ (∀x∀y(x+ sy ≡ s(x+ y)))

and also satis�es the other Robinson axioms. But note that for any number n, I(+)(n,♥) = ♣, but
I(+)(♥, n) = ♥. So it is not the case thatM, I, f |= ∀x∀y(+xy ≡ +yx).

A similarly ‘deviant’ interpretation of multiplication that is as follows.

89

I(·) 0 n > 0 ♥ ♣
0 0 0 ♥ ♣

m > 0 0 m · n ♥ ♣
♥ 0 ♣ ♣ ♣
♣ 0 ♥ ♥ ♥

A theory that �xes this problem is Peano Arithmetic. �is theory improves on Robinson Arithmetic by

adding one more thing we know about the natural numbers: that we can prove things about them by

induction.

De�nition 53. �e theoryPA in the language of arithmetic is the following (in�nite) set of closed formulae.

1. ∀x(¬sx ≡ 0).

2. ∀x∀y(sx ≡ sy → x ≡ y).

3. ∀x(x+ 0 ≡ x) and ∀x∀y(x+ sy ≡ s(x+ y)).

4. ∀x(x · 0 ≡ 0) and ∀x∀y(x · sy ≡ (x · y) + x).

5. For all n and all formulae A(x1, ..., xn, y) in n+ 1 free variables:

∀x1...∀xn((A[y/0] ∧ ∀y(A→ A[sy/y]))→ ∀yA).

�e entry in (5) is called the induction scheme. It is the object language version of our meta-language proof

method of Mathematical Induction. You can prove by Mathematical Induction that for all numbersm and

n, it is the case that Q |= sn0 + sm0 ∧ sm0 + sn0. Using the induction scheme of PA, you can formalise

this argument and show that PA |= ∀x∀y(+xy ≡ +yx).

Attention: Assume you have shown that for some formula A and all numbers n, PA |= A[sn0/x]. �is

does not mean that PA |= ∀xA. It depends on how you prove the statement about sn0 (by induction or

otherwise) and whether this can be formalised in the object language.

Does PA specify the meaning of the language of arithmetic? We can make more precise what could be the

‘best’ outcome here. We know the intended interpretation N, I , so how about we characterise the meaning

of language of arithmetic as all sentences true in this model.

De�nition 54. LetM be a structure. Fix any arbitrary assignment f . �e theory ofM is the set Th(M)

of all closed formulas A such thatM, f |= A.

�at is, Th(M) = {A | frvar(A) = ∅ andM, f |= A}.

Note that for closed formulae the assignment does not ma�er, so the choice of f does not ma�er.

�e theory of a model has an important property. It is complete.

De�nition 55. A theory is complete i� for all closed formulae A, either T ` A or T ` ¬A.

90

Attention: �is is not the completeness of the Completeness�eorem. �e completeness theorem demon-

strates the completeness that ` has with respect to |=. �e completeness of this de�nition is a property of

a set of sentences, not of a consequence relation.

Note that ifM is a structure and f is an assignment, then for all A, eitherM, f |= A orM, f |= ¬A.
�us the theory of a model is complete.

�e theory of N, I is called true arithmetic and denoted by TA. Certainly, TA �xes the intended interpreta-

tion of arithmetic in the object language as well as is possible. But not in a very helpful way: do you know

what the members of TA are? Only in a tautological way: you know that the members of TA are the truths

in the intended interpretation. But this is not very helpful. In contrast, you know the members of Q and

PA in a very concrete sense that does not depend on your use of the intended interpretation.

6.2 �e Compactness �eorem

As usual, we can get the following from the completeness theorem.

�eorem 6.1. Let L be a language, Γ be a set of L-formulae and A be a L-formula. If Γ |= A, then there is

a �nite Γ′ ⊆ Γ such that Γ′ |= A.

Proof. Let L, Γ and A as in the theorem. Suppose Γ |= A. �en by Completeness, Γ ` A. As proofs are
�nite, we can let Γ′ be the �nite set of premisses required for the proof of A. �en Γ′ ` A. By Soundness,

Γ′ |= A.

�e following theorem is what is typically called the compactness theorem. It follows immediately from

the fact that |= is compact.

�eorem6.2 (Compactness�eorem). LetL be a language andΓ be a set ofL-formulae. �en: Γ is satis�able

i� all �nite subsets of Γ are satis�able.

Proof. Le�-to-right is trivial: if Γ has a modelM, I, f thenM, I, f is also a model of any subset.

For right-to-le�, suppose that all �nite subsets of Γ are satis�able. Towards a reductio that Γ is not satis-

�able. �is means that Γ |= ⊥, since if there is no model M, I, f such that M, I, f |= B for all B ∈ Γ,

then it is vacuously the case that all M, I, f that make all members of Γ true, also make ⊥ true. By the

compactness of |=, there is a �nite Γ′ such that Γ′ |= ⊥.

But Γ′ |= ⊥ means that Γ′ is not satis�able. �is is because by de�nition of |=, Γ′ |= ⊥ means that any

modelM, I, f such thatM, I, f |= B for all B ∈ Γ′ it is the case thatM, I, f |= ⊥. But the la�er cannot
be the case by de�nition of |=, so there is no such model. �is contradicts the assumption that all �nite

subsets of Γ′ are satis�able. By reductio, Γ is satis�able.

�e compactness theorem has shocking consequences. Here is one of them.

91

�eorem 6.3. �ere is a structureM, I with an a ∈ M such that for any assignment f with f(x) = a and

for all n ∈ N, it is the case thatM, I, f |= ¬x ≡ sn0 andM, I, f is a model of TA.

�at is, there are models of true arithmetic that have elements that do not correspond to an actual natural

number (recall that the actual natural numbers are obtained by starting with 0 and recursively taking

successors.) Such models as are provided by the theorem are called non-standard models of arithmetic and

elements like a are called non-standard numbers.

Proof. Let LA be the language of arithmetic and let L be the language obtained by adding a new constant

symbol c to the language. �en consider the following set of formulae in L.

Γ = TA ∪ {¬c ≡ sn0 | n ∈ N}.

Show that Γ is satis�able. By the Compactness �eorem, it su�ces to show that every �nite Γ′ ⊆ Γ is

satis�able. So let Γ′ ⊆ Γ be �nite and otherwise arbitrary.

As Γ′ is �nite, there is some natural number k such that for all n ≥ k, ¬c ≡ sn0 /∈ Γ′. �en let N, I be

the standard model of arithmetic and extend it to a model in L by interpreting c as I(c) = k. Let f be any

assignment function.

�en N, I, f |= B for all B ∈ Γ′. �is is because if B ∈ Γ′, then either B ∈ TA or B = ¬c ≡ sn0 for

some n < k.

• Case 1. B ∈ TA. �en N, I, f |= B by de�nition of TA.

• Case 2. B = ¬c ≡ sn0 for some n < k. �en If (sn0) = n and If (c) = k by de�nition of I and as

n < k, If (sn0) 6= If (c), so N, I, f |= ¬c ≡ sn0 by de�nition of |=.

So N, I, f is a model of Γ′. As this goes for arbitrary Γ′, all �nite subsets of Γ are satis�able, so Γ is

satis�able. LetM ′, I ′, f ′ be a model of Γ. Let a = I ′(c). Clearly, a 6= If (sn0) for all n, as otherwise there

is an n such thatM ′, I ′, f ′ |= c ≡ sn0.

Now de�neM = M ′ and I to be like I ′ except that it does not assign anything to c. M, I is a structure

in LA. Let f be any assignment with f(x) = a. �enM, I, f |= ¬x ≡ sn0 for all n ∈ N since If (sn0) =

I ′f
′
(sn0) 6= a.

�e result might be less shocking once you realise that you cannot express ‘x is a nonstandard number’ in

the object language. We use our meta-language understanding of the actual natural numbers to ‘see’ that

the standard numbers are formed as sn0 for n ∈ N, but since we do not have access to N from the object

language, we cannot do this.

As a ma�er of fact, the previous theorem shows that there is no formulaA(x) in the language of arithmetic

that expresses ‘x is a nonstandard number’.

Proof. Towards a reductio assume there is such an A(x). �en ∃xA is a closed formula in the language of

arithmetic. We know that the standard model N, I does not contain nonstandard numbers, thus ¬∃xA ∈

92

TA. But the previous theorem provides a model M, I, f of TA with M, I, f |= ∃xA. �us M, I, f |=
(¬∃xA) ∧ (∃xA). �is can’t be. Contradiction. By reductio, there is no such A.

�us although TA �xes the intended meaning of the symbols in the language of arithmetic, it fails to �x

the true natural numbers. �is is a �rst result about the expressive limitations of �rst order logic. Some

properties of models cannot be �xed by a theory, not even by a complete theory like TA.

We will now see more radical failures of this kind.

6.3 Sizes of Sets

We saw earlier that some sets are countable in that they can be enumerated by the natural numbers. Some

sets are larger than that. Let us introduce some simple notation.

De�nition 56. Given a set s, let |s| be the size of s.

�e size of a set is also called its cardinality, but this term implies theory we have not developed here.

Instead of saying what sizes are, we will just say something about how they compare.

De�nition 57. Let s and t be sets. A function f : s → t is called one-to-one (or bijective) i�Def for all

y ∈ t there is a unique x ∈ s such that f(x) = y.

A one-to-one function pairs up all elements of s and t such that everyone has a partner. We now de�ne

two sets to have the same size if there is a one-to-one function between them.

De�nition 58. Let s and t be sets.

• |s| = |t|, i�Def there is a one-to-one function f : s→ t.

• |s| ≤ |t|, i�Def there is a subset t
′ ⊆ t such that |s| = |t′|.

• |s| < |t|, i�Def |s| ≤ |t| and not |s| = |t|.

Intuitively, this should stand to reason: if we take two sets s and t and we can pair up every member of s

with a member in twithout leaving out any member of either s or t then there are ‘equally many’ elements

in both sets.

Consider how you would ensure that you have equally many of two kinds if you would not know numbers.

Say, you have a heap of forks and knives and you want to ensure that you have as many forks as you have

knives. Since you don’t know numbers, you can’t just count the forks and the knives. But you can pick a

fork, �nd a knife, put the pair to the side and keep going until either (a) you have a fork le� over, but no

knife to pair it with, (b) a knife le� over, but no fork to pair it with or (c) neither forks nor knives le� over.

In (a) you know you have more forks than knives; in (b) more knives than forks; and in (c) equally many

forks and knives.

In the current situation, you indeed do not know the numbers to count the members of sets, since we have

not de�ned what kind of object a size is. So using one-to-one pairings is your only option. �at’s what the

de�nition above does.

93

Example. Some examples.

• All in�nite countable sets are the same size. Let s and t be in�nite countable, then we can write

s = {si | i ∈ N} and t = {ti | i ∈ N} without multiply-mentioning members. �en we can de�ne a

one-to-one function f : s→ t as f(si) = ti for all i ∈ N.

• In particular, the set of even numbers has the same size as the set of all numbers. As do the odd

numbers, prime numbers, square numbers etc.

• All �nite sets are properly smaller in size than the natural numbers, i.e. for all �nite s, |s| < |N|.
If s contains n elements, then we straightforwardly �nd a one-to-one mapping from s to the set

{0, ..., n− 1} ⊆ N. So |s| ≤ |N|.

Clearly it cannot be the case that |s| = |N|. Let f : s → N be any function. �en {f(x) | x ∈ s} is
a �nite subset of N, so it has a maximum n. �en there is no x ∈ s such that f(x) = n + 1, so f is

not one-to-one.

�us |s| < |N|.

We now show that there are also larger sets than N.

De�nition 59 (Power Set). Let s be a set. �e power set of s, P(s) is the set of all subsets of s. Formally:

P(s) = {t | t ⊆ s}.

�e following is another seminal result in Set �eory and the foundations of mathematics.

�eorem 6.4 (Cantor’s �eorem). For all s, |s| < |P(s)|.

Proof. Clearly |s| ≤ |P(s)|, since the function f : s → P(s) de�ned by f(x) = {x} is one to one. It

remains to show that it is not the case that |s| = |P(s)|. Towards a reductio assume |s| = |P(s)|, i.e. that
there is a one-to-one function f : s→ P(s).

Consider the set t = {x ∈ s | x /∈ f(x)}. Clearly t ⊆ s, so t ∈ P(s). Because f is one-to-one, there is a

y ∈ s such that f(y) = t.

Now, by the Law of Excluded Middle (in the meta-language), either y ∈ t or y /∈ t.

• Case 1. y ∈ t. By de�nition of t this means that y /∈ f(y). But f(y) = t, so y /∈ t. Contradiction.

• Case 2. y /∈ t. By de�nition of t this means that y ∈ f(y). But f(y) = t, so y ∈ t. Contradiction.

In either case we reach a contradiction. �us by reductio, |s| 6= |P(s)|. �is was to show.

�us, in particular, the set P(N) is larger than countable—it is uncountable. By iteratively taking power

sets, Cantor’s theorem delivers that there are in�nitely many possible sizes of in�nite sets. Once you have

found countably many in�nites, you can take their union and then keep going. �ere is an uncountably

large in�nity of ever-larger in�nites.

94

6.4 Sizes of Models

Back to our models of �rst-order logic. As an immediate consequence of Henkin’s Model Existence �e-

orem, we get the following.

De�nition 60 (Size of Languages). Let L = 〈C,F ,R, α〉 be a language. �e size of L is |C ∪ F ∪R|.

�eorem 6.5 (Countable Model �eorem). Let L be a countable language. Let Γ be a set of L-sentences that
has an in�nite model. �en Γ has a countable model.

�e Countable Model �eorem is sometimes known as Löwenheim’s �eorem or the Löwenheim-Skolem

�eorem (although we will see below a di�erent theorem of that name). It is, arguably, the historically �rst

non-trivial result in what is now known as Model �eory.

We will only give an extended sketch of the argument.

Proof. Let L = 〈C,F ,R, α〉 and Γ be as in the theorem. Let {ci | i ∈ N} be a countably in�nite set of

unused constant symbols and extend L to the language L∗ containing them them. Consider the following

set Γ∗ in the extended language.

Γ∗ = Γ ∪ {¬ci ≡ cj | i ∈ N, j ∈ N and i 6= j}.

�at is, Γ∗ includes all members of Γ and says that all of the new constant symbols have to receive non-

identical interpretations in a model. It is easy to see that because Γ has an in�nite model, Γ∗ is satis�able

(just take the model and interpret all ci di�erently, which is possible as the model is in�nite).

�en run the construction from the completeness proof to �nd aHenkin extension Γ̂ ofΓ∗. �e construction

is repeated here:

• Base case. L0 = L∗ and Γ0 = Γ∗.

• Recursive step. Assume we have de�ned Ln and Γn.

For each A ∈ Ln let cA be a symbol not used in Ln and de�ne Ln+1 = 〈Cn+1,Fn+1,Rn+1〉 as
follows:

Cn+1 = Cn ∪ {cA | A ∈ wff(Ln)},Fn+1 = Fn, andRn+1 = Rn.

Let Γn+1 ⊆ wff(Ln+1) be a maximally consistent superset of the following set:

Γn ∪ {¬A[cA/x] | A ∈ wff(Ln) and x ∈ V and ¬∀xA ∈ Γn}.

Let Γ̂ =
⋃
n∈N Γn, L̂ = 〈

⋃
n∈N Cn,F ,R〉 and letM, I, f be the term model. As in the proof of complete-

ness,M, I, f |= B for allB ∈ Γ∗. Since this means that the ci all receive di�erent interpretations,M must

be in�nite. We can now show thatM is countable.

Recall that unions of countably many countable sets are countable (�eorem 2.28) and that this means that

over a countable language we only have countably many formulae (can be shown analogously to �eorem

95

2.29). �is means in every stage of the Henkin recursion, we only add countably many new constant

symbols from which, again, only countably many formulae can be formed. �us

⋃
n∈N Cn is countable

as well. �us, because F and R are countable, L̂ is countable and so only countably many terms can be

formed in that language.

But we know thatM = {[t] | t ∈ Tm(L̂), soM has as most as many members as there are terms. �usM

is countable. AsM is also in�nite,M is countably in�nite. �is was to show.

�is result has a surprising consequence. Let L be the language of set theory and ZFC be the standard set

of set theoretic axioms. �e Countable Model �eorem entails that there is a countable model of ZFC. But
from the ZFC axioms one can prove Cantor’s theorem. So there is a countable set (a countable model of

ZFC) that ‘thinks’ it has uncountably large members (because Cantor’s theorem is true within the model).

�is is known as Skolem’s paradox.

Skolem’s paradox was very disturbing to logicians in the early 20th century, before the expressive limita-

tions of the �rst-order language were well understood. Today, we can give a fairly glib explanation of why

Skolem’s paradox should not disturb us. �e claim ‘there is an uncountable set’ has an essential negative

existential component: it says that there is a set s and there isn’t a one-to-one function from s to the natural

numbers. �is can be true in a very small model if it simply does not contain enough material to build the

one to one function. �e small model ‘thinks’ a set that is actually countable is uncountable because it is

too impoverished to contain the one-to-one function.

�e Countable Model �eorem is a special case of a result covering larger languages.

�eorem 6.6 (Löwenheim-Skolem�eorem). Let L be any language and let Γ be a set of sentences that has

an in�nite model. �en for every in�nite set s with |s| ≥ |L|, Γ has a model of size |s|.

(In some textbooks, already the Countable Model �eorem is called the Löwenheim-Skolem �eorem.)

�us, we cannot control at all the sizes of in�nite models. And in larger languages, only the language itself

is a lower bound.

We will use another fact from Set �eory.

Fact 6.7. Let s be a set of in�nite size and let {si | i ∈ N} be countably many sets such that |s| = |si| for all
i ∈ N. �en

∣∣⋃
i∈N si

∣∣ = |s|.

�is allows us to prove the Löwenheim-Skolem�eorem similarly to how we proved the Countable Model

�eorem. We will again only look at an extended sketch of the argument.

Proof of Löwenheim-Skolem. LetL be any language and let Γ be a set of sentences that has an in�nite model

M, I, f . Let s be any in�nite set with |s| ≥ L.

For every x ∈ s let cx be an unused constant symbol. Let L∗ be the extension of Lwith these new symbols.

96

Consider the following set Γ∗.

Γ∗ = Γ ∪ {¬cx ≡ cy | x ∈ s, y ∈ s and x 6= y}.

Show that Γ∗ is satis�able. By the Compactness �eorem, it su�ces to show that every �nite Γ′ ⊆ Γ is

satis�able. So let Γ′ ⊆ Γ∗ be �nite and otherwise arbitrary.

As Γ′ is �nite, it contains only �nitely many formulae of the form ¬cx ≡ cy where x ∈ s and y ∈ s. We can

extendM, I, f to a model of Γ′ by assigning to each cx some element ofM , making sure that the (�nitely

many) such cx that occur anywhere in Γ′ are assigned distinct members ofM (which is possible, asM is

in�nite by assumption).

�is shows that all �nite subsets of Γ∗ are satis�able, so Γ∗ is satis�able. In particular, Γ∗ is consistent (that

satis�ability entails consistency follows from Soundness: if Γ∗ ` ⊥, the nΓ∗ |= ⊥, so Γ∗ is not satis�able.).

�en letM∗, I∗, f∗ be the term model of Γ∗.

As we did in the proof of the Countable Model �eorem, we can compute the size ofM∗. By the previous

Fact, there are |s|-many w�s over L, so in every step of Henkin’s construction, we add |s|-many new

constants which means (by an induction argument) that a�er completing the construction, we have a term

model over a language of size |s|. �us the term model has at most |s| members. As the added formulae of

the form ¬cx ≡ cy ensure that we have at least |s|-many members, |s| = |M∗|. �is was to show.

Sometimes, the Löwenheim-Skolem �eorem is separated into a ‘downward’ and ‘upward’ part and is

phrased in terms of models instead of sets of sentences.

�eorem 6.8 (Upward Löwenheim-Skolem �eorem). Let L be any languageM, I, f be an in�nite model

in L. �en for every in�nite set s with |s| ≥ L and |s| ≥ |M |, there is a modelM ′, I ′, f ′ with |M ′| ≥ |s| and
Th(M, I, f) = Th(M ′, I ′, f ′).

�eorem6.9 (Downward Löwenheim-Skolem�eorem). LetL be any languageM, I, f be an in�nitemodel

in L. �en for every in�nite set s with |s| ≥ L and |s| ≤ |M |, there is a modelM ′, I ′, f ′ with |M ′| = |s| and
Th(M, I, f) = Th(M ′, I ′, f ′).

�e proof of both follows from using the proof of �eorem 6.6 for the set Γ = Th(M, I, f).

7 Incompleteness

�e goal of this section will be to show the following.

�eorem 7.1 (Gödel’s First Incompleteness �eorem). If PA is consistent, then there is a sentence G in the

language of arithmetic such that neither PA ` G nor PA ` ¬G.

�e rough, intuitive meaning of the sentence G will be ‘G is not provable in Peano Arithmetic’. But to

obtain such a G, we �rst need to express provability in PA in the language of arithmetic. �e �rst step is

97

to formalise the language of arithmetic from within the language of arithmetic and then use a remarkable

trick to �nd the sentence G.

7.1 �e Arithmetisation of Syntax

As noted multiple times throughout this course, it fundamentally does not ma�er what the symbols of our

language are. �e language of arithmeticLA contains a constant symbol 0 and three function symbols s, +.

We then construct formulae from the additional symbols ≡,), (, ¬, ∧, ∨,→, ∀, ∃ and countably in�nitely

many variable symbols. Instead of these symbols, we might as well use numbers to form formulae.

• Instead of the symbol 0, use the number 2.

• Instead of the symbol s, use the number 3.

• Instead of the symbol +, use the number 4.

• Instead of the symbol ·, use the number 5.

• Instead of the symbol ≡, use the number 6.

• Instead of the symbol), use the number 7.

• Instead of the symbol (, use the number 8.

• Instead of the symbol ¬, use the number 9.

• Instead of the symbol ∧, use the number 10.

• Instead of the symbol ∨, use the number 11.

• Instead of the symbol→, use the number 12.

• Instead of the symbol ∀, use the number 13.

• Instead of the symbol ∃, use the number 14.

• Instead of variable symbols x0, x1, ... use numbers larger than 14.

If this is our logical language, then the �rst Robinson axiom (∀x0(¬sx0 ≡ 0)) would be wri�en as the

sequence 〈13, 15, 8, 9, 3, 15, 6, 2, 7〉. �is is a lot harder to read for us, but since the symbols carry no

inherent meaning, it would not change anything about what we have done so far.

We now have an alphabet of symbols that we can talk about in the language of arithmetic, but to speak of

formulae we need to be able to speak of sequences of symbols. Unfortunately, the language of arithmetic

does not contain a mechanism to form ordered sets. But as discovered by Gödel, we can speak of certain

(very large) numbers as containing all the information that we would normally encode in an ordered set.

Despite being a substantial insight, this is not magic. �e following has been known since antiquity.

Fact 7.2 (Fundamental�eorem of Arithmetic). For every numbern, there is a unique i and a unique sequence

〈e0, ..., ei−1〉 such that n = pe00 · p
e1
1 · ... · p

ei−1

i−1 where for each k, pk is the kth prime number.

�at is, we can write every number n as as a product of prime numbers, where it is uniquely determined

how o�en any prime number occurs in the product. (Note that if for some k, the kth prime number pk does

not occur at all in the product, then ek = 0.)

98

Put di�erently, writing numbers as the sequence of exponents of their factorisation into primes is uniquely

readable. �at is, the information of the sequence 〈e0, ..., ei−1〉 is ‘encoded’ (if you will) in the number n

that can be wri�en as n = pe00 · ... · p
ei−1

i−1 . From the sequence, we can get n by simple multiplication and

from n we can get the sequence by factorisation.

�us, for all intents and purposes, n and 〈e0, ..., ei−1〉 are interchangeable. We could actually decide to

‘think’ of numbers as being sequences of numbers. �at is, we could de�ne a model of arithmetic in which

all members are sequences of natural numbers and de�ne the standard interpretation of s, + and · for these
sequences. In this model, we would have the sequence 〈13, 15, 8, 9, 3, 15, 6, 2, 7〉 as a member, and we can

treat (‘think of’) this sequence as the formula ∀x0(¬sx0 ≡ 0).

But this is not quite su�cient. We want to be able to treat numbers as sequences from within Peano

Arithmetic. �at is, we want to be able to prove in PA things like ‘m is the ith member of the sequence n’.

Encouragingly, it is indeed the case that we can express things like ‘m is the ith member of the sequence

n’ by only using arithmetical operations. To wit, we may say that the numberm is the ith member of the

sequence n i� for pi being the ith prime number, it is the case that pmi is a divisor of n and pm+1
i is not a

divisor of n.

�e following de�nitions make clear what we are demanding from Peano Arithmetic.

De�nition 61. Given a natural number n, it’s canonical name is the term sn0. For brevity, we write n

as an abbreviation of the canonical name of n.

�at is, e.g., 2 is an abbreviation of ss0, 5 is an abbreviation of sssss0 and so on.

De�nition 62 (Representation). Let n be a number and P : Nn → {0, 1} be an n-ary property of the

numbers. Say that P is representable in PA i�Def there is a formula AP (x0, ..., xn−1) in the language of

arithmetic such that for all numbersm0, ...,mn−1 it is the case that:

PA ` AP [m0, ...,mn−1/x0, ..., xn−1] i� P (m0, ...,mn−1) = 1.

Note that this only makes sense if PA is indeed consistent (which we are tacitly assuming here). Because

if it is inconsistent, then PA ` AP [m0, ...,mn−1/x0, ..., xn−1] for all numbersm0, ...,mn−1 and not just

for the ones with property P . (If we are worried about PA possibly being inconsistent, we can use the

same de�nition and just use the right-to-le� part of the ‘i�’.)

�at is, a property is representable in Peano Arithmetic when for all numbers it follows fromPA that they

(their canonical names) have the property exactly when they actually do have that property.

Remark: �ede�nition of Representation does not ensure that weird things can’t happen for non-standard

numbers. For example, it could be the case that all numbers have some unary property P that is repres-

entable, i.e. for all numbers n, PA ` AP [n/x0]. It does not follow that PA ` ∀x0AP . If PA does not

prove the universally quanti�ed statement, then there is a non-standard model containing a non-standard

number a that does not have the property AP (in that model). We would then say that the non-standard

99

number does not have the property P , but this is loose talk as we only really understand what P means for

the standard numbers. Such non-standard numbers do not contradict the representability of P .

�eorem 7.3 (Gödel). �e relation ‘m is the ith member of n’ is representable in Peano Arithmetic.

For the proof, we will assume that we already have the following.

• �ere is a formula Pr(n,m) that represents ‘m is the nth prime number’.

• �ere is a formula Ex(n,m, i) that represents ‘i is nm’.

�ese are very hard to �nd and we shall make no a�empt to do so here. �e problem is that it is very easy

to �nd a formula Pr2(m) saying that m is the 2nd prime: with a predicate prime and a de�ned relation <

in place, this is just:

prime(m) ∧ ∃k(k < m ∧ prime(k) ∧ ∀i((i < m ∧ prime(i))→ k ≡ i)

Similarly, we can express thatm is the 3rd prime:

prime(m) ∧ ∃k∃j(k < m ∧ j < k ∧ prime(k) ∧ prime(j) ∧ ∀i((i < m ∧ prime(i))→ (k ≡ i ∨ j ≡ i))

But it is very hard to generalise this to �nd Pr(m,n), as the number of quanti�ers we need to say ‘nth

prime’ appears to depend on n. Put di�erently, expressing in general that ‘there are n− 1 primes belowm’

is talk about a set of numbers, but our quanti�ers only talk about �rst-order numbers. Gödel solved this

problem by using a more sophisticated method of coding sequences than we are using, using more deep

mathematical results than the Fundamental �eorem. We will not replicate this method here.

Proof of �eorem 7.3. Using Pr and Ex, we can state a formula seq(n, i,m) that represents ‘m is the ith

member of n’. To wit:

seq(n, i,m) = ∀p∀q∀r(Pr(i, p)→ ((Ex(p,m, q)→ ∃k(k · q ≡ n)) ∧ (Ex(p, sm, r)→ ¬∃k(k · r ≡ n)))).

�at is, seq[n, i,m/n, i,m] is the case in the intended interpretation of arithmetic if the ith prime number

(i.e. p), taken to themth power (i.e. q) is a divisor of n (i.e. part of its prime factorisation) and the ith prime

number (i.e. p) taken to them+ 1st power (i.e. r) is not a divisor of n. But this is indeed just the case if the

ith member of n ism.

Given what Pr and Ex represent and that PA proves all simple arithmetical facts (such as when k · r = n),

it is easy to see that PA proves seq[n, i,m/n, i,m] exactly when it is true.

�us, by using the formula seq we can extract the ‘information’ about this large number being a sequence

from within Peano Arithmetic. With this, we can start constructing all we need to do logic from within

arithmetic. (We will not spell out the language-internal de�nitions in detail, instead being convinced by

the following remarks.)

100

• �ere is a formula len(n,m) representing ‘m is the length of n (when understood as a sequence)’. To

de�ne this, we de�ne what it means to be the largest prime number that divides n and letm be the

index of this prime number (de�ned by Pr).

• �ere is a formula cat(n,m, k) representing ‘k is the concatenation of n and m (when all three are

understood as sequences)’. We can �nd this formula by le�ing i be the length of n, ‘decomposing’m

into its prime factors pe00 · ... · p
en−1

n−1 , computing pe0i+0 · ... · p
en−1

i+n−1 and multiplying this with n.

• �ere is a formula term(k) representing ‘k is a term in the language of arithmetic’ (with the symbols

of the language being as above). We can obtain this formula as follows: k is a term i� there is a

sequence n such that the last member of n is k and every member of n is either 2 (i.e. the constant

symbol for 0) or a number larger 14 (i.e. a variable symbol) or formed by concatenating 〈3〉 (i.e. s)
with previous member of n or concatenating 〈4〉 or 〈5〉 (i.e. + or ·) with two previous members of n.

�e method for term(k) shows how to use our method of ‘thinking’ of formulae as sequences and of se-

quences as numbers can be used to give recursive de�nitions in the language of arithmetic. We can say that

a number k is obtained by a recursion if there is a sequence n that ends in k and every previous entry in

the sequence n is either an atom or a recursive step on two previous members.

• Using the representation of concatenation, we can represent the formation of formulas. For example,

there is a formula cond(i, j, k) representing that the sequence coded by k is obtained by forming

(s1 → s2), where s1 is the sequence coded by i and s2 is the sequence coded by j.

• �en, there is a formula w�(k) representing ‘k is a formula in the language of arithmetic’. We get

this by recursion like the terms.

• �ere is a formula Ax(k) representing ‘k is an axiom of Peano Arithmetic’. �e only problem is the

induction scheme, but having de�ned w�, we can easily de�ne what it means to be an instance of

the induction scheme.

Now, given the association of numbers with symbols at the beginning of this section, we can de�ne the

following (in the metalanguage).

De�nition 63 (Gödel Codes). Let A be a formula in the language of arithmetic. De�ne pAq to be the

natural number whose prime exponents are A (in the language where the symbols are numbers). pAq is

the Gödel code of A.

For example, we saw that we can represent ∀x0(¬sx0 ≡ 0) by the sequence 〈13, 15, 8, 9, 3, 15, 6, 2, 7〉.
Taking these as prime exponents, we get p∀x0(¬sx0 ≡ 0)q = 213 ·315 ·58 ·79 ·113 ·1315 ·176 ·192 ·237. �is

is a very large number, but it contains the ‘same information’ as the sequence 〈13, 15, 8, 9, 3, 15, 6, 2, 7〉.

Given a Gödel code pAq, we will now write nA for the canonical name for the number pAq that codes the

formula A. �at is, if A = ∀x0(¬sx0 ≡ 0), then nA is an abbreviation of the term containing 213 · 315 · 58 ·
79 · 113 · 1315 · 176 · 192 · 237 many s, followed by 0.

101

7.2 �e Fixed Point Lemma

�e crucial result for showing Incompleteness is the following technical result.

�eorem 7.4 (Fixed Point Lemma). For every formula A(x) in the language of arithmetic (with exactly one

free variable) there is a closed formula D such that:

PA ` (D → A[nD/x]) ∧ (A[nD/x]→ D),

which we will abbreviate as PA ` (D ↔ A[nD/x]).

�eFixed Point Lemma says that there is a formulaD that is equivalent to pDq having the propertyA. Very

roughly, one sometimes says that the meaning of D is ‘I have property A’ (which of course is inaccurate

in many ways, as D merely says that some number pDq that we have associated in an entirely arbitrary

way with D has the property A). It’s called the Fixed Point Lemma because a �xed point of an operation

is something that remains unchanged under the operation. In a sense,D is a �xed point of the ‘operation’

of applying A: the truth value of D remains unchanged by applying A to ‘it’ (properly: to the number we

have arbitrarily designated as its code).

�is result is also known as the diagonal lemma because the proof involves an operation whereby one

maps a formula B(z) to B[nB/z]. Plugging something into itself is typically called diagonalising.

Proof. We begin by de�ning what it means to apply a formula (given by its code) to another formula (given

by its code). De�ne a function f : N2 → N by:

f(n,m) =

 pB[m/z]q, if n = pB(z)q for some formula B(z) in a single free variable

0, if n is not code of a formula in a single free variable.

If Z(x) is a formula in a single free variable then we call the output of f(pZq, pZq) the diagonal of Z
(i.e. Z “plugged into itself”).

With the work we have done on coding, we can write a formula F (x2, x1, x0) that represents the property

‘x0 is the output of f(x2, x1)’. �at is,PA ` F [m,n,k/x2, x1, x0] i� f(m,n) = k (in the meta-language).

Now letA be an arbitrary formula in the language of arithmeticwithx0 being its sole free variable. Consider

the following formula that has a single free variable z:

B = ∀x0(F [z, z/x2, x1]→ A)

�is is a property of (codes of) sentences: “the code for the sentence the code of Z has property Z has

property A’. (Or: ‘the diagonal of Z has property A’.)

Using the representation of f we can plug B into itself.

D = ∀x0(F [nB,nB/x2, x1]→ A)

102

�is is the formula that says ‘the code for the sentence the code of B has property B has property A’. (Or:

‘the diagonal of B has property A.)

Note that D = B[nB/z], which means that f(pBq, pBq) = pDq. �at is the code of the code of B has

property B is just the code forD. �usD indeed says that its own code has property A. (Or: D says that

the diagonal of B has property A and its own code pDq is the diagonal of B.)

It remains to show this formally. Because F represents f it is the case that:

PA ` F [nB,nB,nD/x2, x1, x0].

Now we can show that Peano Arithmetic proves that D is equivalent to A[nD/x0].

1. Show that PA ` D → A[nD/x0].

By de�nition of D and (∀E.), PA ∪ {D} ` F [nB,nB/x2, x1][n
D/x0]) → A[nD/x0]. Write this

more compactly as:

PA ∪ {D} ` F [nB,nB,nD/x2, x1, x0]→ A[nD/x0]

Note that we have the antecedent of this. So by (→E.).

PA ∪ {D} ` A[nD/x0]

�us by (→I.):

PA ` D → A[nD/x0]

2. Now show that PA ` A[nD/x0]→ D.

Note that because f is a function we have the following.

PA ` ∀i∀j((F [nB,nB, i/x2, x1, x0] ∧ F [nB,nB, j/x2, x1, x0])→ i ≡ j)

�is means by (∀E.) and because PA ` F [nB,nB,nD/x2, x1, x0] that:

PA ` ∀i(F [nB,nB, i/x2, x1, x0]→ i ≡ nD).

By a simple proof (involving the substitution of identicals) this means:

PA ` A[nD/x0]→ ∀i(F [nB,nB, i/x2, x1, x0]→ A[i/x0]).

By re-binding the quanti�ed variable i to x0:

PA ` A[nD/x0]→ ∀x0(F [nB,nB/x2, x1]→ A).

103

But the right-hand side of this just is D. �us:

PA ` A[nD/x0]→ D.

�is concludes the proof.

7.3 �e Incompleteness �eorem

�e Fixed Point Lemma is very powerful. It allows us to generate for any property a sentence that (roughly,

informally) says of itself that it does not have the property. Such sentences are sometimes called diagonals

or diagonalising the property. Recall that to show the incompleteness theorem, we wanted a sentence G

that (roughly) says of itself that it is not provable. We get this from the �xed point lemma if we can represent

provability in PA.

�eorem 7.5. �e property x being a code for a formula provable from PA is representable in PA by a

formula PfPA(x).

Proof. Use the Hilbert calculus for characterising `. �en proofs are sequences. So we can say that PfPA(x)

is the formula that says there is a formula y coding a sequence such that:

• x codes a w� and all members of y code w�s.

• If len(y, i), then seq(y, i, x) (i.e. x is the last element of y).

• For each j ≤ i and all k: if seq(y, j, k), then either

– k is (a code for) a Peano Axiom; or

– k is (a code for) a substitution instance of a logical axiom; or

– there are l < j and o < j such that if n is the lth entry in y and n is the oth entry in y, then

cond(n, k,m) (i.e. k is obtained by modus ponens from n andm).

We already saw that we can represent ‘being a Peano Axiom’ and ‘being a conditional’. It is not di�cult

(but tedious) to represent substitution and so we can represent ‘substitution instances of logical axioms’.

Another, perhaps easier way to obtain this result is to realise that we can represent Turing computability

inPA and then �nd a Turing machine that outputs all proofs. �en PfPA(x) can be de�ned as there being

a number n such that this TM outputs a proof with conclusion x in step n of its computation. (�is would

be establishing/exploiting the fact that the set of proofs from PA is recursively enumerable.)

Be careful with the representation of provability. It is not the case, for example, that PA 6` A entails that

PA ` ¬Pf[nA/x]. �is is because by de�nition of representation, PA 6` A only entails that it is not the

case thatPA ` Pf(nA/x]. Something not being provable from Peano Arithmetic does not entail that Peano

Arithmetic proves its negation. �is is because PA is incomplete, as we can now demonstrate.

�eorem 7.6 (Gödel’s First Incompleteness �eorem). If PA is consistent, then there is a sentence G in the

language of arithmetic such that neither PA ` G nor PA ` ¬G.

104

Proof. Using the Fixed Point Lemmawe can �nd a sentenceG such thatPA ` G↔ ¬PfPA[nG/x]. Assume

that PA is consistent and show that neither PA ` G nor PA ` ¬G.

• Assume for reductio that PA ` G. �en there is a proof of G from Peano Arithmetic and thus there

is a natural number n that codes that proof. Because PfPA represents provability in PA, it follows

that PA ` PfPA[nG/x].

But by de�nition of G, PA ` G. So by (→E.), PA ` ¬PfPA[nG/x]. �us by (¬I.), PA ` ⊥.
Contradiction to the assumption that PA is consistent. So by reductio, PA 6` G.

• Assume for reductio thatPA ` ¬G. �is means by (Contraposition) and (→E.) thatPA ` PfPA(nG).

Let N, I be the standard interpretation of arithmetic and f be any assignment. As Peano Arithmetic

is true in the standard interpretation,N, I, f |= PfPA(nG). �is means that there is a natural number

(i.e. a member of N) that codes a proof of G. Using our work on coding, we can ‘decode’ to �nd the

actual proof. But then PA ` G, so by (¬I.), PA ` ⊥. Contradiction to PA being consistent. So by

reductio, PA 6` ¬G.

�is concludes the proof.

Remark: �e assumption thatPA is true in the standard interpretation is slightly stronger thanPA being

consistent (Gödel called this assumption ω-consistency). Using a technique called Rosser’s Trick one can do

the proof without relying on the standard interpretation.

Note that since PA 6` G no actual natural number can be the code of a proof of G. So in the standard

model of arithmetic,G is true. So the fact thatG is not provable must mean that there is some other model

of PA in which there is a code for a proof of pGq. �is can only be a non-standard number. In a sense,

this non-standard number codes a ‘non-standard proof’ of G.

Perhaps more famous than the First Incompleteness �eorem is the Second one, stating that PA cannot

prove its own consistency.

�eorem 7.7 (Gödel’s Second Incompleteness �eorem). If PA is consistent, then it is not the case that

PA ` ¬PfPA[n⊥/x].

�e sentence ¬PfPA[n⊥/x] represents PA 6` ⊥, i.e. that PA is consistent.

Proof. Assume PA is consistent. We can formalise the proof of the First Incompleteness �eorem within

the coding language. �is is very tedious and a bit of work, but the process is not particularly illuminating.

We take codes of our formulae for coding like seq and can then talk about codes of codes. �is allows us to

phrase and prove in PA the object-language version of the Fixed Point Lemma (roughly: for all codes of

open formulae a there is a code for a formula d such that Pf(b), where b codes the biconditional of a and

plugging d into a).

Having done this, we obtain the following as the object language version of the First Incompleteness �e-

orem.

PA ` ¬PfPA[n⊥/x]→ ¬PfPA[nG/x].

105

Now assume for reductio that PA ` ¬PfPA[n⊥/x], i.e. that Peano Arithmetic proves its own consistency.

�en PA ` ¬PfPA[nG/x] by (→E.). By de�nition of G, this means that PA ` G. But by the First

Incompleteness �eorem, this is not the case. Contradiction. Hence by reductio, it is not the case that

PA ` ¬PfPA[nG/x].

Evidently, nothing here hinged on us talking about Peano Arithmetic speci�cally. We can conclude that

every theory that can represent its own provability relation is incomplete and cannot prove itself consistent.

�is notably includesQ (as shown by RM Robinson) and ZFC.

Note that if a superset of PA is de�nable by a purely syntactic, recursive de�nition (as PA itself), it can

represent its own provability relation (as we can combine the de�nition of the axioms with the de�nition

of proof, as above). �is su�ces to run all the same arguments again. So trying to extend PA to ‘make it

complete’ is hopeless.

In particular, it follows that there is no recursive set of axioms from which we can derive all members of

TA, as any such axiomatisation is incomplete, but True Arithmetic is complete. �us:

�eorem 7.8. True Arithmetic is not recursively axiomatisable.

7.4 �e Unde�nability of Truth

�e previous results hinged on the representability of the provability relation. �e following result does

not require this.

�eorem 7.9 (Tarski’s Unde�nability �eorem). �e property being a member of TA is not representable

in TA.

Proof. Assume for reductio there is a formula T (x) such thatTA ` T (n) i� there is a formula A such that

n = pAq and A ∈ TA. �en, by the Fixed Point Lemma, there is a sentence L (a ‘liar’) such that:

TA ` L↔ ¬T [nL/x].

Because TA is complete, we are in one of two cases.

• Case 1. L ∈ TA. �en by de�nition of T , TA ` T [nL/x]. But by de�nition of L and by (→E.)

TA ` ¬T [nL/x]. But this means that TA is inconsistent.

• Case 2. ¬L ∈ TA. �en by de�nition of L and (→E.) TA ` T [nL/x]. By de�nition of T , then

L ∈ TA. But this means that TA is inconsistent.

�us in both cases we conclude thatTA is inconsistent. But it is not, because it has a model. Contradiction.

�us there is no such T .

�is uses less resources than Gödel’s theorems: any complete theory that has the resources required for the

Fixed Point Lemma (essentially just the coding of formulae in sequences and the representation of some

functions on codes) is subject to this result and hence cannot represent its own membership. (�e stronger

106

requirement for Gödel’s theorems is the representability of proofs.) But for theories that do not have these

resources, it doesn’t even make sense to talk about representing its own membership (how would that look

like, if we can’t represent formulae?).

Tarski concluded that one cannot express the truth predicate of an object language from within the object

language, but must instead ascend to a meta-language. �is is the ‘ultimate’ result in our ongoing theme

about the superior expressibility of the meta-language.

Another immediate consequence from Unde�nability is this:

�eorem 7.10. �ere is no Turing Machine that, when run, sequentially outputs all and only members ofTA.

Proof. As said, TuringMachines can be represented in arithmetic. If therewere such a TM as in the theorem,

it could be used to represent membership in TA, which is impossible per the previous result.

�is is roughly why Incompleteness is sometimes (somewhat misleadingly and much too vaguely) para-

phrased as ‘there is always something that we cannot know’. �is last result means that there is no ‘process’

by which we can generate all arithmetical truths.

107

	What are mathematical proof methods for logic?
	Preliminaries
	Consequence Relations
	Recursive definitions and inductive proofs

	Propositional Logic
	The language of propositional logic
	Truth tables and valuations
	Equivalence and Substitution
	Expressive Power
	Semantic consequence
	The Natural Deduction Calculus
	Syntactic Consequence
	Derived Rules
	The Hilbert Calculus
	Soundness
	Completeness

	Predicate Logic
	Languages and Structures
	Terms and their Interpretation
	The Language of Predicate Logic
	Satisfaction and Models
	Substitution
	Natural Deduction for Predicate Logic
	Hilbert calculus

	Soundness for Predicate Logic
	Completeness for Predicate Logic
	Term Models
	Finding Henkin Extensions
	Proof of Completeness

	Compactness and the Löwenheim-Skolem Theorems
	First Order Theories
	The Compactness Theorem
	Sizes of Sets
	Sizes of Models

	Incompleteness
	The Arithmetisation of Syntax
	The Fixed Point Lemma
	The Incompleteness Theorem
	The Undefinability of Truth

